Calcium Entry Blockers Protect Brain Energy Metabolism Against Ischemic Damage

  • J. Krieglstein
  • J. Weber
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 200)


Under physiological conditions the intracellular calcium ion activity is regulated at a level several orders of magnitude lower than that of the extracellular space. However, under the conditions of energy failure the cytosolic Ca2+ concentration increases markedly. The reasons for this are the opening of the voltage-dependent calcium channels within the plasma membrane, the release of Ca2+ from the ATP-dependent sites of sequestration in the endoplasmatic reticulum and the impaired ability of mitochondria to accumulate calcium. The resulting increase in free cytosolic calcium activity disrupts a variety of cellular functions and, in particular, may be responsible in part for the breakdown of membrane phospholipids.


Reperfusion Period Calcium Entry Blocker Adenylate Energy Charge Brain Energy Metabolism Adenylate Pool 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andjus, R., Suhara, K., and Sloviter, H.A., 1967, An isolated, perfused rat brain preparation, its spontaneous and stimulated activity, J. Appl. Physiol. 22: 1033.Google Scholar
  2. Atkinson, D.E., 1968, The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers, Biochemistry 7: 4030.Google Scholar
  3. Bergmeyer, H.U., 19/0, “Methoden der enzymatischen Analyse”, Verlag Chemie, Weinheim.Google Scholar
  4. Folbergrova, J., Pontén, U., and Siesjö, B.K., 1974, Patterns of changes in brain carbohydrate metabolites, amino acids and organic phosphates at increased carbon dioxide tensionsGoogle Scholar
  5. J Neurochem., 22: 1115.Google Scholar
  6. Freedman, S.B., Dawson, G., Villereal, M.L., and Miller, R.J., 1984, Identification and characterization of voltage-sensitive calcium channels in neuronal clonal cell lines, J. Neurosci. 4: 1453.PubMedGoogle Scholar
  7. Hanke, J. and Krieglstein J., 1982, Über die Mechanismen der protektiven Wirkung von Methohexital auf den zerebralenGoogle Scholar
  8. Energiestoffwechsel, Arzneimittel-Forsch. 32: 620.Google Scholar
  9. Kopp, S.J., Krieglstein, J., Freidank, A., Rachman, A., Seibert, A., and Cohen, M.M., 1984, P-31 Nuclear magnetic resonance analysis of brain. II. Effects of oxygen deprivation on isolated perfused and nonperfused rat brain.Google Scholar
  10. J. Neurochem. 43: 1716.Google Scholar
  11. Krieglstein, J., 1985, An isolated rat brain preparation perfused with a fluorocarbon emulsion, in: “Oxygen Transport to Tissue - VI”, D. Bruley, H.J. Bicher, and D. Reneau, eds., Plenum Publishing Corporation, New York and London.Google Scholar
  12. Krieglstein, J. and Stock, R., 1974, The isolated perfused rat brain as a model for studying drugs acting on theGoogle Scholar
  13. CNS, Psychopharmacology (Berlin) 35: 169.Google Scholar
  14. Krieglstein, G., Krieglstein, J., and Stock, R., 1972, Suitability of the isolated perfused rat brain for studying effects on cerebral metabolism, Naunyn-Schmiedeberg’s Arch. Pharmacol. 275: 124.Google Scholar
  15. Krieglstein, J., Dirks, B., and Hanke, J., 1981, Energy metabolism in isolated rat brain, in: “Animal Models and Hypoxia”, V. Stefanovich, ed., Pergamon Press, Oxford.Google Scholar
  16. Lowry, O.H. and Passonneau, J.V., 1972, “A Flexible System of Enzymatic Analysis”, Academic Press, New York.Google Scholar
  17. Rachman, A., Kellmann, L., and Krieglstein, J., 1984, Effect of dihydroergocristine on energy metabolism in the isolated rat brain affected by ischemia and in neuroblastoma cells deprived of oxygen and glucose, J. Cereb. Blood Flow Metab. 4: 610.Google Scholar
  18. Siesjö, B.K., 1978, “Brain Energy Metabolism”, John Wiley and Sons, New York.Google Scholar
  19. Siesjö, B.K., 1981, Cell damage in the brain: A speculativeGoogle Scholar
  20. synthesis, J. Cereb. Blood Flow Metab. 1: 155. Spedding, M., 1985, Calcium antagonist subgroupsGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • J. Krieglstein
    • 1
  • J. Weber
    • 1
  1. 1.Institut für Pharmakologie und Toxikologie, Fachbereich Pharmazie und LebensmittelchemiePhilipps-UniversitätMarburgGermany

Personalised recommendations