Interpretation of Oxygen Disappearance Curves Measured in Blood Perfused Tissues

  • Donald G. Buerk
  • Pankajam K. Nair
  • Eric W. Bridges
  • Tom R. Hanley
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 200)


We have developed a two compartment (tissue and blood) lumped parameter model to interpret oxygen disappearance curves (O2 DCs) measured in vivo with PO2 microelectrodes in tissues which are perfused with blood. To include the properties of the oxyhemoglobin equilibrium curve (HEC), we used an algorithm we have recently developed for both standard and nonstandard conditions. The new blood and tissue model is more useful than a previous analysis using the Hill equation for blood and constant oxygen consumption (\( \mathop {\text{V}}\limits^ \bullet\ \)O2). The model can be adapted for constant (zero-order) consumption, Michelis-Menten kinetics, or for double cytochrome systems. Examples for the former include brain, and for the latter, carotid body. The models are discussed in relationship to experimental microelectrode measurements in gerbil brain and in cat carotid body after blood flow occlusion.


Carotid Body Tissue Compartment Disappearance Rate Lump Parameter Model Gray Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adair, G. S. The hemoglobin system. VI. The oxygen disassociation curve of hemoglobin. J. Biol. Chem. 63: 529–545, 1925.Google Scholar
  2. Buerk, D. G. and Longmuir, I. S. Evidence for nonclassical respiratory activity from oxygen gradient measurements in tissue slices. Microvas. Res. 13: 345–353, 1977.CrossRefGoogle Scholar
  3. Buerk, D. G. and Saidel, G. M. Local kinetics of oxygen metabolism in brain and liver tissue slices. Microvas. Res. 16: 391–405, 1978.CrossRefGoogle Scholar
  4. Buerk, D. G. and Goldstick, T. K. Multiple oxidase model for oxygen consumption in tissue. Fed. Proc. (abstract) 37: 598, 1978.Google Scholar
  5. Buerk, D. G. An evaluation of Easton’s paradigm for the oxyhemoglobin equilibrium curve. In: Oxygen Transport to Tissue–VI, Bruley et al. (eds.), Plenum Press, N.Y., pp 333–344, 1985.Google Scholar
  6. Buerk, D. G. and Bridges, E. W. A simplified algorithm for computing the variation in oxyhemoglobin saturation with pH, PCO2, T and DPG. Chem. Eng. Comm. (in press).Google Scholar
  7. Easton, D. M. Oxyhemoglobin dissociation curve as expo-exponential paradigm of asymmetric sigmoid function. J. Theorl Biol. 76: 335–349, 1979.CrossRefGoogle Scholar
  8. Fujii, T., Buerk, D. G. and Whalen, W. J. Activation energy in the mammalian brain slice as determined by micro-electrode measurements. Jap. J. Physiol. 31: 279–283, 1981.CrossRefGoogle Scholar
  9. Hill, A. V. The possible effects of the aggregation on the molecules of hemoglobin on its dissociation curves. J. Physiol. (London) 40:iv, 1910.Google Scholar
  10. Jöbsis, F. F. Oxidation metabolism at low PO2. Fed. Proc. 31: 1404–1413, 1972.PubMedGoogle Scholar
  11. Jones, D. P. Effect of mitochondrial clustering on O2 supply in hepatocytes. Am. J. P_hysiol. 247: C83 - C89, 1984.Google Scholar
  12. Kelman, G. R. Digital computer subroutine for the conversion of oxygen tension into saturation. J. Appl. Physiol. 21: 1375–1376, 1966.PubMedGoogle Scholar
  13. Leninger-Follert, E. Direct determination of local oxygen consumption of the brain cortex in vivo. Pflugers Arch. 372: 175–179, 1977.CrossRefGoogle Scholar
  14. Martin, R. M., Halsey, Jr., J. H. and Reneau, D. D. A critical evaluation of oxygen disappearance during stop flow in the gerbil brain. Neurol. Res. 4: 21–34, 1982.PubMedGoogle Scholar
  15. Mills, E. and Jöbsis, F. F. Mitochondrial respiratory chain of carotid body and chemoreceptor response to changes in oxygen tension. J. Neurophysiol. 35: 405–428, 1972.PubMedGoogle Scholar
  16. Nair, P. K., Spande, J. I., and Whalen, W. J. A microelectrode for measuring intracellular pH. In Oxygen Transport to Tissue — VI, Bruley et al. (eds.), Plenum Press, N.Y., pp. 881–886, 1985.Google Scholar
  17. Nair, P. K., Buerk, D. G., Whalen, W. J. and Schubert, R. W. Two cytochrome oxygen consumption model and mechanism for carotid body chemoreception. This Symposium.Google Scholar
  18. Piantadosi, C. A., Sylvia, A. L. Saltzman, H. A. and Jöbsis-Vandervliet, F. F. Carbon monoxide-cytochrome interactions in the brain of the fluorocarbon-perfused rat. J. Appl. Physiol. 58: 665–672, 1985.PubMedGoogle Scholar
  19. Reneau, D. D., Guilbeau, E. J. and Null, R. E. Oxygen dynamics in brain. Microvas. Res. 13: 337–344, 1977.CrossRefGoogle Scholar
  20. Reneau, D. D. and Halsey, Jr., J. H. Interpretation of oxygen disappearance rates in brain cortex following total ischaemia. In: Oxygen Transport to Tissue–II, Silver et al. (eds.), Plenum Press, N.Y., pp. 189–198, 1978.Google Scholar
  21. Whalen, W. J., Riley, J. and Nair, P. A microelectrode for measuring intracellular PO2. J. Appl. Physiol. 23: 789–801, 1967.Google Scholar
  22. Wilson, D. F., Erecinska, M., Drown, C. and Silver, I. A. The oxygen dependence of cellular energy metabolism. Arch. Biochem. Biophys. 195: 485–493, 1979a.PubMedCrossRefGoogle Scholar
  23. Wilson, D. F., Owen, C. S. and Erecinska, M. Quantitative dependence of mitochondrial oxidative phosphorylation on oxygen concentration: A mathematical model. Arch. Biochem. Biophys. 195: 494–504, 1979b.PubMedCrossRefGoogle Scholar
  24. Wilson, D. F., Erecinska, M., Nuutinen, E. M. and Silver, I. A. Dependence of cellular metabolism and local oxygen delivery on oxygen tension. In: Oxygen Transport to Tissue–VI, Bruley et al. (eds.), Plenum Press, N.Y., pp. 629–634, 1985.Google Scholar
  25. Winslow, R. M., Samaja, M., Winslow, N. J., Rossi-Bernardi, L. and Shrager, R. I. Simulation of continuous blood O2 equilibrium curve over physiological pH, DPG and PCO2 range. J. Ape. Physiol. 54: 524–529, 1983.CrossRefGoogle Scholar
  26. Zander, R. Oxygen solubility in normal human blood. In: Advances in Physiological Sciences Volume 25 Oxygen Transport to Tissue, Kovach et al. (eds.), Pergamon Press, N.Y., pp. 331–332, 1981.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Donald G. Buerk
    • 1
  • Pankajam K. Nair
    • 1
  • Eric W. Bridges
    • 1
  • Tom R. Hanley
    • 2
  1. 1.Departments of Biomedical EngineeringLouisiana Tech UniversityRustonUSA
  2. 2.Departments of Chemical EngineeringLouisiana Tech UniversityRustonUSA

Personalised recommendations