Advertisement

Improved Quantitative Analysis of Reflection Spectra Obtained from the Surface of the Isolated Perfused Guinea Pig Heart

  • J. Hoffmann
  • D. W. Lübbers
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 200)

Abstract

The chromophoric substances which cause light absorption of optical spectra of the perfused Langendorff heart in the wavelength range of 500 to 650 nm are myoglobin and the cytochromes of the respiratory chain. We use a modified multicomponent analysis based on the two-flux theory of Kubelka and Munk (1931; Kubelka, 1948; 1954) to quantify the reflection spectra. Since the absorption spectra of the involved substances have overlapping absorption peaks and different forms, their concentration ratios are determined within different accuracy. The experiments show that the accuracy can be improved by the introduction of constraints, e.g. the reduction of the number of the basic absorption spectra. The constraints are worked out for the special measuring conditions.

Keywords

Reflection Spectrum Basic Spectrum Multicomponent Analysis Perfuse Langendorff Heart Give Correlation Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Buse, G., and Steffens, G., 1978, Studies on Cytochrome c - Oxidase III, Hoppe-Seyler’s Z. Physiol. Chem., 359:1011.Google Scholar
  2. Caspary, L., Hoffmann, J., and LUbbers, D. W., 1984, Determination of redox states for myoglobin and cytochromes a, b and c in vivo by reflection photometry from the isolated guinea pig heart, in: “Oxygen Transport to Tissue - VII,” F. Kreuzer et al., eds., Plenum Press, New York, in print.Google Scholar
  3. Heinrich, U., 1981, Untersuchungen zur quantitativen photometrischen Analyse der Redox-Zustände der Atmungskette in vitro und in vivo am Beispiel des Gehirns, Dissertation, Bochum.Google Scholar
  4. Kubelka, K., 1948, New contributions to the optics of intensely light- scattering materials, part I, J. Opt. Soc. Am. 38:448.Google Scholar
  5. Kubelka, K., 1954, New contribution to the optics of intensely light- scattering materials, part II, J. Opt. Soc. Am. 44:330.Google Scholar
  6. Kubelka, K., and Munk, F., 1931, Ein Beitrag zur Optik der Farbanstriche, Z. Techn. Phys., 11a:593–603.Google Scholar
  7. Hoffmann, J., Heinrich, U., Ahmad, H. R., and LUbbers D. W., 1984, Analy-sis of tissue reflection spectra obtained from brain or heartGoogle Scholar
  8. using two-flux theory for non-constant light scattering, in: “OxygenTransport to Tissue - VI,” D. Bruley, H.I. Bicher, D. Reneau, eds., Plenum Press, New York - London.Google Scholar
  9. Hoffmann,’J., and Lubbers, D. W., 1985, Estimation of concentration ratios and the redox states of the cytochromes from noisy reflection spectra using multicomponent analysis methods, this volume.Google Scholar
  10. LUbbers, D. W., and Niesel, W., 1957, Ein Kurzzeit-Spektralanalysator zur Registrierung rasch verlaufender Änderung der Absorption, Naturwissenschaften 4: 59–60.Google Scholar
  11. v. Jagow, G., Schägger, H., Engel, W. D., and Machleidt, W., 1978, Beef heart complex III: Isolation and characterisation of cytochrome b, FEBS Lett. 91: 121.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • J. Hoffmann
    • 1
  • D. W. Lübbers
    • 1
  1. 1.Max-Planck-Institut für SystemphysiologieDortmund 1Germany

Personalised recommendations