Advertisement

P NMR Evaluation of Hypoxic Stress in Brain of Animal Models

  • B. Chance
  • D. Smith
  • S. Nioka
  • M. Osbakken
  • B. J. Clark
  • A. Giantisos
  • B. Steinberg
  • S. Butler
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 200)

Abstract

Quantification by NMR of hypoxic stress is best afforded by the ratio of phosphocreatine (PCr) to inorganic phosphate (Pi) (1). The thin cranium and sternum of neonates affords ideal conditions for NMR evaluation of impaired oxidative metabolism (2,3). Brains of animal models (dog and cat) are best studied with muscles retracted with the rf coil placed on the bare skull.31 P and 1H (lactate) signals are time shared with a doubly tuned coil (4). Servo-stabilized hypoxia gives simplified steady state analysis. Hypoxic insults of the brain are evaluated by the integral of the deviation of the PCr/Pi ratio from the normoxic values. Generally, a deviation of 1 unit of PCr/Pi for an interval of 3 hr will lead to a severe metabolic damage and recovery from hypoxia is often 30-fold delayed. Comprehensive monitoring of energy metabolism (PCr/Pi), respiratory chain redox states, intracellular pH and lactate accumulation allow the calculation of integrated pH and lactate “insults” and thus offer new insights on the effects of hypoxia on brain oxidative metabolism.

Keywords

Oxidative Metabolism Brain Death Hypoxic Stress Nuclear Magnetic Resoance Comprehensive Monitoring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    Chance, B., Eleff, S., Sokolow, D. and Sapega, A. (1981) Proc. Natl. Acad. Sci. USA 78: 6714–6718.PubMedCrossRefGoogle Scholar
  2. (2).
    Chance, B., Younkin, D., Eleff, S., Warnell, R. and Delivoria-Papdopoulos, M. (1983) Ped.Res. 17: 397.Google Scholar
  3. (3).
    Younkin, D.P., Delevoria-Papadopoulos, M., Kelley, R., Clancy, R., Leigh, Jr. J.S. and Chance, B., (1984) Ped.Res. 18: 385.CrossRefGoogle Scholar
  4. (4).
    Schnall, M.D., Harihara Subramanian,H., Leigh, Jr.J.S., Gyulai, L., McLaughlin, A. and Chance, B. (1985) Soc.Mag.Res.in Med. 63: 401–406.Google Scholar
  5. (5).
    Subramanian, H.V., Chance, B., Leigh, Jr. J.S., Clark, B.J., Osbakken, M., Egan, J., Nioka, S., Hilberman, M., Donlon, E. and Richardson, M. (1985) Fed. Proc. 44: 676.Google Scholar
  6. (6).
    Hilberman, M., Harihara Subramanian, V., Haselgrove, J., Egan, J., Gyulai, L. and Chance, B. (1984) J. Cereb. Blood Flow and Metab. 4: 334–342.CrossRefGoogle Scholar
  7. (7).
    Chance, B. and Schoener, B. (1966) J. Biol. Chem. 241: 4577–4587.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • B. Chance
    • 1
  • D. Smith
    • 1
  • S. Nioka
    • 1
  • M. Osbakken
    • 1
  • B. J. Clark
    • 1
  • A. Giantisos
    • 1
  • B. Steinberg
    • 1
  • S. Butler
    • 1
  1. 1.Department of Biochemistry and BiophysicsUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations