Fetal Oxygen Supply

  • A. N. Zirakadze
  • L. M. Makharadze
  • P. Y. Kintraia
  • L. Sh. Japashvili
  • D. G. Takadze
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 200)


It has been established that there exist maternal mechanisms controlling the fetal oxygen supply: a neuro-reflex mechanism mediated by changes in uterine vascular tonus and a humoral one influencing erythropoiesis and iron stores in the pregnant animal’s organism.


Pregnant Female Female Rabbit Hypercapnic Acidosis Fetal Lamb Uterine Blood Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler, S., Roy, A., and Relman, A. S., 1965, Intracellular acid-base regulation, J. Clin. Invest. 44: 8.PubMedCrossRefGoogle Scholar
  2. Assali, N. S., Holm, G. W., and Sehgal, N., 1962, Hemodynamic changes in fetal lamb in utero in response to asphyxia, hypoxia and hypercapnia, Circ. Res. 11: 423.PubMedGoogle Scholar
  3. Bee, F., 1954, Vascular morphology of the human placenta in the mammalian fetus. Physiological aspects of development, Cold Spring Harbor Symp., Quant. Biol. 19: 29.CrossRefGoogle Scholar
  4. Campbell, A. G. M., Dawes, G. S., Fishman, A. P., Hyman, A. J., and James, G. S., 1966, The oxygen consumption of the placenta and foetal membranes in the sheep, J. Physiol. 182: 439.PubMedGoogle Scholar
  5. Chachava, K. V., and Zirakadze, A. N., 1968, The estimation of oxygen tension in the brain tissue from animal fetus in an acute experiment, Proc. of the GSSR AS 2: 499.Google Scholar
  6. Chervakov, P. J., 1965, To the method of polarographic oxygen determination in tissues of the animal organism using oxygemograph, in: “The Mechanism of Medical Means Action,” Omsk, p. 110.Google Scholar
  7. Chizhov, A. Y., Obukhova, E. B., Philimonov, V. G., Karash, L. M., and Strelkov, R. B., 1983, On the mechanism of the fetus increased tolerance to hypoxia (experimental studies), Akusherstvo i Gynecologia 1: 21.Google Scholar
  8. Collings, C. A., Curet, G. B., and Mullin, J. P., 1983, Maternal and fetal responses to a maternal aerobic exercise program, Amer. J. Obstet. Gynec. 145, 6: 702.PubMedGoogle Scholar
  9. Crue, Zh., 1979. Biochemistry. Moscow.Google Scholar
  10. Gesser, H., and Poupa, O., 1983, Acidosis and cardiac muscle contractility: comparative aspects. A 76, 3: 559.Google Scholar
  11. Grave, G., Kennedy, G., and Sokoloff, G., 1972, Impairment of growth development of the rat brain by hyperoxia at atmospheric pressure, J. Neurochem. 19, 1: 187.PubMedCrossRefGoogle Scholar
  12. Hersberg, S., Gaffiot, H., Devanlay, M., Douand, C., and Dupin, H., 1983, Carence en fer en fin de grossesse. Rev. Branc. Gynecol. 78, 3: 195.Google Scholar
  13. Kolb, V. G., and Kamyshnikov, V. S., 1982, in: “Reference Book on Clinical Chemistry”, Minsk, 283.Google Scholar
  14. Lee, M. S., Oakes, G. K., Gam, R., and Hobel, S., 1982, The rabbit - a suitable model for investigation of vascular responsiveness during pregnancy, Clin. Exp. Hypertens. 4: 429.Google Scholar
  15. Metcalfe, J., Moll, W., Bartels, H., Hilpert, P., and Parer, J. T., 1965, Transfer of carbon monoxide and nitrous oxide in the artificially perfused sheep placenta, Circ. Res. 16: 95.PubMedGoogle Scholar
  16. Metsler, D., 1980. Biochemistry. Moscow.Google Scholar
  17. Morishima, H. O., Moya, F., Bossers, A. S., and Daniel, S. S., 1964, Adverse effect of maternal hypocapnea on the newborn guinea pig, Amer. J. Obstet. Gynecol. 83: 524.Google Scholar
  18. Morishima, H. O., Daniel, S. S., Adamsons, K., Jr., and James, G. S., 1965, Effects of positive pressure ventilation of the mother upon the acid-base state of the fetus. Amer. J. Obstet. Gynecol. 93: 269.Google Scholar
  19. Motoyama, E. K., Rivard, G., Acheson, F., and Cook, Ch., 1967, The effect of changes in maternal pH and pCO2 on the pO2 of fetal lambs, Anesth. 28, 5: 891.CrossRefGoogle Scholar
  20. Panigel, M., 1962. Placental perfusion experiments. Amer. J. Obstet. Gynecol. 84: 1664.Google Scholar
  21. Rivard, G., Motoyama, E. K., Acheson, F. M., and Cook, C. D., 1967, The relation between maternal and fetal oxygen tensions in sheep, Amer. J. Obstet. Gynecol. 97: 925.Google Scholar
  22. Robin, E. D., 1961, The men and mitochondria-intracellular and subcellular acid-base relations. New Eng. J. Med. 265: 780.PubMedCrossRefGoogle Scholar
  23. Takada, M., 1981, Experimental studies on the cause of retinopathy of prematurity and the preventive effect of a-tocopherol, Nagoya Med. J. 25, 3: 85.Google Scholar
  24. Vert, P., 1980, Early and late complications when treating with oxygen. Proceedings of the 7th European Congress of Perinatologists, Barselona, p. 21.Google Scholar
  25. White, A., Handler, P., Smith, E., Hill, P., and Leman, I., 1981, Biochemistry Grounds, Moscow.Google Scholar
  26. Zirakadze, A. N., and Surguladze, D. K., 1974, A circuit of high-sensitivity to register continuously the blood stream volume speed, in: “The Questions of Biologic and Medical Technique”, Tbilisi, p7–211.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • A. N. Zirakadze
    • 1
  • L. M. Makharadze
    • 1
  • P. Y. Kintraia
    • 1
  • L. Sh. Japashvili
    • 1
  • D. G. Takadze
    • 1
  1. 1.Academician Chachava K. V. Perinatal Medicine ObstetricsGynecology Research Institute of the GSSR PHMTbilisiUSSR

Personalised recommendations