Percolation and Transit in Microvascular Networks

  • Antal G. Hudetz
  • Sverker Werin
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 200)


Progressive microcirculatory obstruction interfering with normal tissue oxygen supply has been repeatedly demonstrated in various diseases in many organs (Knisely et al., 1947) and, in particular, in the ischemic brain cortex (Crowell and Olsson, 1972; Little et al., 1976). Both light microscopic and electron microscopic examinations have shown that cerebrovascular obstructions occur primarily at the capillary level and appear to be the result of the compressive effect of glial swelling and developing edema (Little et al., 1976), although changes in blood viscosity may play an important role, too (Dintenfass, 1971). In other experiments secondary reductions in regional blood flow as well as slow elevations of vascular resistance have been observed in permanent cerebral ischemia (Hossmann and Schuier, 1980; Shima et al., 1983). Late ischemic changes in blood flow were paralelled by rising tissue pressure and water content (Ianotti et al., 1985).


Transit Time Percolation Threshold Capillary Number Capillary Density Mean Transit Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bar, T., 1981, Distribution of radially penetrating arteries and veins in the neocortex of the rat, in: “Cerebral Microcirculation and Metabolism”, J. Cervos-Navarro, E. Fritschka, eds., Raven Press, New York.Google Scholar
  2. Crowell, R. M., and Olsson, Y., 1972, Impaired microvascular filling after focal cerebral ischemia in the monkey, Neurology, 22: 500.PubMedGoogle Scholar
  3. Dintenfass, L., 1971, “Blood Microrheology — Viscosity Factors in Blood Flow, Ischemia, and Thrombosis”, Appleton-Century-Crafts, Inc., New York.Google Scholar
  4. Duvernoy, H. M., Delon, S., and Vannson, J. L., 1981, Cortical blood vessels of the human brain, Brain Research Bulletin, 7: 519.PubMedCrossRefGoogle Scholar
  5. Fischer, E. G., 1973, Impaired perfusion following cerebrovascular stasis, Arch. Neurol., 29: 361.PubMedCrossRefGoogle Scholar
  6. Hossmann, K.-A., and Schuier, F. J., 1980, Experimental brain infarcts in cats, Stroke, 11: 583.PubMedCrossRefGoogle Scholar
  7. Hudetz, A. G., Conger, K. A., Kovach, A. G. B., Halsey, J. H., and Hino, K., 1984, Distribution of blood flow in partially closed cerebral capillary networks, in: “Oxygen Transport to Tissue VI.,” D. F. Bruley, H. I. Bicher, D. D. Reneau, eds., Plenum Press, New York.Google Scholar
  8. Hudetz, A. G., Conger, K. A., Halsey, J. H., McCormick, J., Wilson, T. A., and Roesel, J. R., 1985, Changes in regional cerebrovascular resistance during partial ischemia in rats. in: “Oxygen Transport to Tissue VII.,” I. S. Longmuir, ed., Plenum Press, New York (in press).Google Scholar
  9. Ianotti, F., Hoff, J. T., and Schielke, G. P., 1985, Brain tissue pressure in focal cerebral ischemia, J. Neurosurg., 62: 83.CrossRefGoogle Scholar
  10. Kirkpatrick, S., 1979, in: “Ill-Condensed Matter: 1978 Les Houches Lectures,” R. Balian, R. Maynard, G. Toulouse, eds., North Holland.Google Scholar
  11. Larson, R. G., Scriven, L. E., and Davis, H. T., 1981, Percolation theory of two-phase flow in porous media, Chemical Enginnering Science, 36: 57.CrossRefGoogle Scholar
  12. Little, J. R., Kerr, F. W. L., and Sundt, T. M., 1976, Microcirculatory obstruction in focal cerebral ischenia: An electron microscopic investigation in monkeys, Stroke, 7: 25.CrossRefGoogle Scholar
  13. Meencke, H. J., and von Keyserlingk, D. G., 1979, Stereologische untersuchung der gefassarchitektur der grosshirnrinde des kanischens, Acta Anat., 103: 365.PubMedCrossRefGoogle Scholar
  14. Shima, T., Hossman, K.-A., and Date, H., 1983, Pial arterial pressure in cats following middle cerebral artery occlusion, Stroke, 14: 713.PubMedCrossRefGoogle Scholar
  15. Yamakawa, T., Sugiayama, I., and Niimi, H., 1984, Behaviors of white blood cells in microcirculatory of the cat brain cortex during hemorrhagic shock: intravital microscopic study, Int. J. Microcirc., 3: 588.Google Scholar
  16. Yen, R. T., and Fung, Y. C., 1978, Effect of velocity distribution on red cell distribution in capillary blood vessels, Am. J. Physiol., 235: H251.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Antal G. Hudetz
    • 1
  • Sverker Werin
    • 1
  1. 1.Experimental Research DepartmentSemmelweis Medical UniversityBudapestHungary

Personalised recommendations