Advertisement

Peptides as Targets and Carriers

  • P. S. Ringrose
  • M. J. Humphrey
Part of the NATO ASI Series book series (NSSA, volume 113)

Abstract

The discovery of diverse neurohormonal and other biologically active peptides has increased interest in exploiting peptide mimetics as therapeutic drugs.1–4 The high potency, local synthesis/release and rapid in-activation of natural peptides can cause particular problems in designing synthetic drug molecules that are both selective and have reasonable duration of action. Selective drug targeting is usually achieved by specific agonist/antagonist activity for a particular cell surface receptor or by specific interaction with an enzyme active site on a peptidase, which in turn is involved in either activating or deactivating a biologically active peptide. Synthetic peptides also have utility in facilitating the selective uptake of other drug molecules into target tissues by exploiting permease specificities and in some cases the specific tissue localization of peptidases. These mechanisms will be discussed with examples of carrier peptides and peptides targeted on specific receptors. Particular comment will, however, also be made of the pharmacokinetic problems encountered with peptide drugs the route of drug administration, intestinal absorption, metabolic stability, target tissue distribution and renal vs. biliary excretion.

Keywords

Thyrotropin Release Hormone Atrial Natriuretic Factor Luteinizing Hormone Release Hormone Enzyme Active Site Peptide Drug 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.S. Ringrose, Small peptides as carriers and tar.gets in human therapy, Biochem. Soc. Trans. 11:804 (1983).Google Scholar
  2. 2.
    P.S. Ringrose, Warhead-delivery and suicide substrates as concepts in antimicrobial drug design, Soc. Gen. Microbiol. Sumposium 35, F. O’Grady and D. Greenwood, eds., Cambridge University Press, Cambridge, (1985).Google Scholar
  3. 3.
    V.J. Hruby, Design of peptide superagonists and antagonists, conformational and dynamic considerations, Amer. Chem. Soc. 251:9 (1984).Google Scholar
  4. 4.
    V.J. Hruby, J.L. Krstenansky and W.L. Cody, Recent progress in the rational design of peptide hormones and neurotransmitters, Ann. Rep. Med. Chem. 19:303 (1984).CrossRefGoogle Scholar
  5. 5.
    P.S. Ringrose, Peptides as antimicrobial agents, in: “Microorganisms and Nitrogen Sources”. J.W. Payne, ed., John Wiley & Sons, Chichester (1980).Google Scholar
  6. 6.
    I. Chopra and P. Ball, Transport of antibiotics into bacteria, Adv. Microb. Physiol. 23:183 (1982).CrossRefGoogle Scholar
  7. 7.
    P.S. Ringrose, Expolitation of the bacterial envelope: rational design of antibacterial agents, Med. Microbiol. 3:179 (1983).Google Scholar
  8. 8.
    D. Steiner, D. Quinn, S. Chan, J. Marsh and H. Tager, Processing mechanisms in the biosynthesis of proteins, Ann. NY. Acad. Sci. 343:1 (1980)CrossRefGoogle Scholar
  9. 9.
    F.E. Bloom, The endorphins: A growing family of pharmacologically pertinant peptides, Ann.Rev. Pharmacol. Toxicol. 23:151 (1983).CrossRefGoogle Scholar
  10. 10.
    R.B. Dickson, Endocytosis of polypeptides and their receptors, Trends in Pharm. Sci. 6:164 (1985).CrossRefGoogle Scholar
  11. 11.
    J.G. Allen, F.R. Atherton, M.J. Hall, C.H. Hassall, S.W. Holmes, R.W. Lambert, L.J. Nisbet and P.S. Ringrose, Phosphonopeptides, a new class of synthetic antibacterial agents, Nature 272:56 (1978).CrossRefGoogle Scholar
  12. 12.
    J.G. Allen, F.R. Atherton, M.J. Hall, C.H. Hassall, S.W. Holmes, R.W. Lambert, L.J. Nisbet and P.S. Ringrose, Phosphonopeptides as antibacterial agents: alaphosphin and related phosphonopeptides, Antimicrob. Agents Chem. 15:684 (1979).CrossRefGoogle Scholar
  13. 13.
    F.R. Atherton, M.J. Hall, C.H. Hassall, R.W. Lambert and P.S. Ringrose, Phosphonopeptides as antibacterial agents: rationale, chemistry, and structure-activity relationships. Antimicrob. Agents Chem. 15:677 (1979).CrossRefGoogle Scholar
  14. 14.
    F.R. Atherton, M.J. Hall, C.H. Hassall, R.W. Lambert, W.J. Lloyd and P.S. Ringrose, Phosphonopeptides as antibacterial agents: mechanism of action of alaphosphin, Antimicrob. Agents Chem. 15:696 (1979).CrossRefGoogle Scholar
  15. 15.
    F.R. Atherton, M.J. Hall, C.H. Hassall, S.W. Holmes, R.W. Lambert, W.J. Lloyd and P.S. Ringrose, Phosphonopeptide antibacterial agents related to alafosfalin: design, synthesis and structure-activity relationships, Antimicrob. Agents Chem. 18:897 (1980).CrossRefGoogle Scholar
  16. 16.
    F.R. Atherton, M.J. Hall, C.H. Hassall, R.W. Lambert, W.J. Lloyd, A.V. Lord, P.S. Ringrose and D. Westmacott, Phosphonopeptides as substrates for peptide transport systems and peptidases of E.coli, Antimicrob. Agents Chem. 24:522 (1983).CrossRefGoogle Scholar
  17. 17.
    J.G. Allen, L. Havas, E. Leicht, I. Lenox-Smith and L.J. Nisbet, Phosphonopeptides as antibacterial agents: metabolism and pharmacokinetics of alafosfalin in animals and humans, Antimicrob. Agents Chem. 16:306 (1979).CrossRefGoogle Scholar
  18. 18.
    B.N. Ames, F.L. Ames, J.D. Young, D. Tsuchiya and J. Lecocq, Illicit transport: the oligopeptide permease, Proc. Natl. Acad. Sci. USA 70:456 (1973).CrossRefGoogle Scholar
  19. 19.
    C. Gilvarg, Portage transport, in: “The Future of Antibiotherapy and Antibiotic Research”, Ninet, L., Bost, P.E., Bouanchaud, D.H. and Florent, J., eds., Academic Press, London (1981).Google Scholar
  20. 20.
    J.W. Payne, J.S. Morley, P. Armitage and G.M. Payne, Transport and hydrolysis of antibacterial peptide analogues in E.coli: Backbone modified aminoxy peptides, J. Gen. Microbiol. 130:2253 (1984).Google Scholar
  21. 21.
    J.S. Morley, J.W. Payne and T.D. Hennessey. Antibacterial activity and uptake into E.coli of backbone-modified analogues of small peptides, J. Gen. Microbiol. 129:3701 (1983).Google Scholar
  22. 22.
    J.S. Morley, T.D. Hennessey and J.W. Payne, Backbone-modified analogues of small peptides: transport and antibacterial activity. Biochem. Soc. Trans. 11:798 (1983).Google Scholar
  23. 23.
    H. Diddens, M. Dorgerloh and H. Zahner, Metabolic products of micro-organisms. On the transport of small peptide antibiotics in bacteria, J. Antibiotics 32:87 (1979).CrossRefGoogle Scholar
  24. 24.
    T. Kametani, K. Kigasawa, M. Hiiragi, K. Wakisaka, S. Haga, H. Sugi, K. Tanigawa, Y. Suzuki, K. Fukara, O. Irino, O. Saita and S. Yamabe, Studies on the synthesis of chemotherapeutics, Heterocycles 16: 1205 (1981).CrossRefGoogle Scholar
  25. 25.
    R.A. Payne and C.H. Stammer, Cycloserine peptides, J. Org. Chem. 33: 2421 (1968).CrossRefGoogle Scholar
  26. 26.
    A.S. Steinfeld, F. Naider and J.M. Becker, Anticandidal activity of 5-fluorocytosine-peptide conjugates, J. Med. Chem. 22:1104 (1979).CrossRefGoogle Scholar
  27. 27.
    W.D. Kingsbury, J.C. Boehm, R.J. Mehta, S.F. Grappel and C. Gilvarg, A novel peptide delivery system involving peptidase activated prodrugs as antimicrobial agents. Synthesis and biological activity of peptidyl derivatives of 5-fluorouracil, J. Med. Chem. 27:1447 (1984).CrossRefGoogle Scholar
  28. 28.
    J.S. Ti, A.S. Steinfeld and F. Naider, Anticandidal activity of pyrimidine-peptide conjugates, J. Med. Chem. 23:913 (1980).CrossRefGoogle Scholar
  29. 29.
    W.D. Lichliter, F. Naider and J.M. Becker, Basis for the design of anticandidal agents from studies of peptide utilization in Candida albicans, Antimicrob. Agents Chem. 10:483 (1976).CrossRefGoogle Scholar
  30. 30.
    P.J. McCarthy, P.F. Troke and K. Gull, Mechanism of action of nikkomycin and the peptide transport system of Candida albicans, J. Gen. Microbiol. 131:775 (1985).Google Scholar
  31. 31.
    F. Naider, P. Shenbagamurthi, A.S. Steinfeld, H.A. Smith, C. Boney and J.M. Becker, Synthesis and biological activity of tripeptidyl polyoxins as antifungal agents, Antimicrob. Agents Chem. 24:787 (1983).CrossRefGoogle Scholar
  32. 32.
    H. Bruckner, G. Jung, R.G. Werner and K.R. Appel, Synthesis and biological activities of the tri-L-alanine derivative of isonicotinic acid hydrazide, Arzneimittel-Forschung 33:1630 (1983).Google Scholar
  33. 33.
    J.W. Payne, Transport and utilization of peptides by bacteria, in: “Microorganisms and Nitrogen Sources”. J.W. Payne, ed., J. Wiley & Sons, Chichester, (1980).Google Scholar
  34. 34.
    C.L. Hermsdorf and S. Simmonds, Role of peptidases in utilization and transport of peptides by bacteria, in: “Microorganisms and Nitrogen Sources”. Payne, J.W. ed., J. Wiley & Sons, Chichester, (1980).Google Scholar
  35. 35.
    J.C. Boehm, W.D. Kingsbury, D. Perry and C. Gilvarg, The use of cysteinyl peptides to effect portage transport of sulfhydryl-containing compounds in E.coli, J. Biol. Chem. 258:14850 (1983).Google Scholar
  36. 36.
    W.D. Kingsbury, J. Boehm, D. Perry, and C. Gilvarg, Portage of various compounds into bacteria by attachment to glycine residues in peptides, Proc. Natl. Acad. Sci., U.S.A. 81:4573 (1984).CrossRefGoogle Scholar
  37. 37.
    C.T. Walsh, Suicide substrates: mechanism-based enzyme inactivators: Recent Developments, Ann. Rev. Biochem. 53:493 (1984).CrossRefGoogle Scholar
  38. 38.
    K-S Cheung, S.A. Wasserman, E. Dudek, S.A. Lerner and M. Johnston, Chloroalanyl and propargylglycyl dipeptides. Suicide substrate containing antibacterials, J. Med. Chem. 26:1733 (1983).CrossRefGoogle Scholar
  39. 39.
    D. Perry and E.P. Abraham, Transport and metabolism of bacilysin and other peptides by suspensions of Staphylococcus aureus, J. Gen. Microbiol. 115:213 (1979).CrossRefGoogle Scholar
  40. 40.
    P.L. Carl, P.K. Chakravarty, J.A. Katzenellenbogen and M.J. Weber, Protease-activated ‘prodrugs’ for cancer therapy, Proc. Natl. Acad. Sci. U.S.A. 77:2224 (1980).CrossRefGoogle Scholar
  41. 41.
    P.K. Chakravarty, P.L. Carl, M.J. Weber and J.A. Katzenellenbogen, Plasmin-activated prodrugs for cancer chemotherapy. 2. Synthesis and biological activity of peptidyl derivatives of doxorubicin, J. Med. Chem. 26:638 (1983).CrossRefGoogle Scholar
  42. 42.
    P.K. Chakravarty, P.L. Carl, M.J. Wever and J.A. Katsenellenbogen, Plasmin-activated prodrugs for cancer chemotherapy. 1. Synthesis and biological activity of peptidylacivicin and peptidylphenylenedi-amine mustard, J. Med. Chem. 26:633 (1983).CrossRefGoogle Scholar
  43. 43.
    R.L. Firestone, J.M. Pisano, P.J. Bailey, A. Sturm, R.J. Bonney, P. Wightman, R. Devlin, C.S. Lin, D.L. Keller and P.C. Tway, Lysosomotropic agents. 4. Carbobenzoxyglycylphenylalanyl, a new protease-sensitive masking group for introduction in cells. J. Med. Chem. 25:539 (1982).CrossRefGoogle Scholar
  44. 44.
    M. Masquelier, R. Baurain and A. Trouet, Amino acid and dipeptide derivatives of daunorubicin. 1. Synthesis, physiocochemical properties, and lysosomal digestion. J. Med. Chem. 23:1166 (1980).CrossRefGoogle Scholar
  45. 45.
    M.M. Ponpipom, R.L. Bugianesi, J.C. Robbins, T.W. Doebber and T.Y. Shen, Cell-specific ligands for selective drug delivery to tissues and organs, J. Med. Chem. 24:1388 (1981).CrossRefGoogle Scholar
  46. 46.
    R.H. Goldfarb, Proteases in tumor invasion and metastasis, in: “Tumor Invasion and Metastasis”, Liotta, L.A. and Hart, I.R., eds., Martinus Nijhoff, The Hague (1982).Google Scholar
  47. 47.
    S.D.J. Magnan, F.N. Shirota and H.T. Nagasawa, Drug latentiation by gamma-glutamyl transpeptidase, J. Med. Chem. 25:1018 (1982).CrossRefGoogle Scholar
  48. 48.
    T.M. Dolak and L.I. Goldberg, Renal blood flow and dopaminergic agonists, Ann. Rep. Med. Chem. 11:103 (1981).CrossRefGoogle Scholar
  49. 49.
    M.R. Lee, Dopamine and the Kidney, Clin. Sci. 62:439 (1982).Google Scholar
  50. 50.
    S. Wilk, H. Mizoguchi and M. Orlowski, Gamma-glutamyl Dopa: A kidney-specific dopamine precursor, J. Pharm. Exp. Ther. 206:227 (1978).Google Scholar
  51. 51.
    D. Worth, J. Brown, J. Cooke, J. Harvey and M.R. Lee, The effect of intravenous gamma-glutamyl L-DOPA on renal function in normal volunteers, Clin. Sci. 66:13 (1984).Google Scholar
  52. 52.
    M. Orlowski, H. Mizoguchi and S. Wilk, N-Acyl-gamma-glutamyl derivatives of sulfamethoxazole as models of kidney-selective prodrugs, J. Pharm. Exp. Ther. 212:167 (1980).Google Scholar
  53. 53.
    L.L. Iversen, Nonopioid neuropeptides in mammalian CNS, Ann. Rev. Pharmacol. Toxicol. 23:1 (1983).CrossRefGoogle Scholar
  54. 54.
    I. Sami and M.D. Said, Vasoactive peptides: state of the art review. Hypertension, 5 (Suppl.l):l (1983).Google Scholar
  55. 55.
    J.S. Morley, Modulation of the action of regulatory peptides by structural modification, Trends in Pharm. Sci. 1:463 (1980).CrossRefGoogle Scholar
  56. 56.
    G.M. Makhlouf, Enteric neuropeptides: Role in neuromuscular activity of the gut, Trends in Pharm. Sci. 6:214 (1985).CrossRefGoogle Scholar
  57. 57.
    T. Hokfelt, O. Johansson, A. Ljungdahl, J.M. Lundberg and M. Schultzberg, Peptidergic neurones, Nature 284:515 (1980).CrossRefGoogle Scholar
  58. 58.
    S. Undenfriend and D.L. Kilpatrick, Biochemistry of the enkephalin- and enkephalin-containing peptides. Arch. Biochem. Biophys. 2211: 309 (1983).CrossRefGoogle Scholar
  59. 59.
    J. DiMaio and P.W. Schiller, A cyclic enkephalin analog with high in-vitro opiate activity, Proc. Natl. Acad. Sci. U.S.A. 77:7162 (1980).CrossRefGoogle Scholar
  60. 60.
    J. DiMaio, T.M-D. Nguyen, C. Lemieux and P.W. Schiller, Synthesis and pharmacological characterization in-vitro of cyclic enkephalin analogues: Effect of conformational constraints on opiate receptor selectivity, J. Med. Chem. 25:1432 (1982).CrossRefGoogle Scholar
  61. 61.
    J.L. Krstenansky, R.L. Baranowski and B.L. Currie, A new approach to conformationally restricted peptide analogs: Rigid beta-bends. 1. Enkephalin as an example, Biochem. Biophys. Res. Comm. 109: 1368 (1982).CrossRefGoogle Scholar
  62. 62.
    A. Camerman, D. Mastropaolo, I. Karle, J. Karle and N. Camerman, Crystal Structure of Leucine-Enkephalin, Nature 306:447 (1983).CrossRefGoogle Scholar
  63. 63.
    G.D. Smith and J.F. Griffin, Conformation of [Leu5]-enkephalin from X-ray diffraction: Features important for recognition at opiate receptor, Science 199:1214 (1978).CrossRefGoogle Scholar
  64. 64.
    A.F. Spatola, Peptides of the hypothalamus, Ann. Rep. Med. Chem. 19:199 (1981).CrossRefGoogle Scholar
  65. 65.
    A.J. Prange and C.B. Nemeroff, Peptides in the central nervous system: focus on thyrotropin releasing hormone and neurotensin, Ann. Rep. Med. Chem. 17:31 (1982).CrossRefGoogle Scholar
  66. 66.
    A. Peterkofsky, F. Battaini, Y. Koch, Y. Takahara and P. Dannies, Histidyl-proline diketopiperazine: Its biological role as a regulatory peptide, Mol. Cell. Biochem. 42:45 (1982).CrossRefGoogle Scholar
  67. 67.
    M. Hichens, A comparison of thyrotropin – releasing hormone with analogues: influence of disposition upon pharmacology, Drug Met. Rev. 14:77 (1983).CrossRefGoogle Scholar
  68. 68.
    N.A. Sharif, Diverse roles of thyrotropin-releasing hormone in brain, pituitary and spinal function, Trends in Pharm. Sci. 6:119 (1985).CrossRefGoogle Scholar
  69. 69.
    J.C. Buckingham, Hypothalamic releasing hormones, Trends in Pharm. Sci. 2:335 (1981).CrossRefGoogle Scholar
  70. 70.
    H.M. Fraser, A new class of contraceptives, Nature 296:391 (1982).CrossRefGoogle Scholar
  71. 71.
    R.M. Freidinger, D.F. Veber, D.S. Perlow, Bioactive conformation of luteinizing hormone-releasing hormone: evidence from a conformationally constrained analog, Science 210:656 (1980).CrossRefGoogle Scholar
  72. 72.
    W.K. Burn, D. Machin, W.E. Waters, Biodegradable polymer luteinising hormone releasing hormone analogue for prostatic cancer: Use of a new peptide delivery system, Br. Med. J. 289:1580 (1984).CrossRefGoogle Scholar
  73. 73.
    T.W. Redding, A.V. Schally, T.R. Tice and W.E. Meyers, Long-acting delivery systems for peptides: Inhibition of rat prostate tumors by controlled release of [D-Trp6] luteinizing hormone-releasing hormone from injectable microcapsules, Proc. Natl. Acad. Sci. U.S.A. 81:5845 (1984).CrossRefGoogle Scholar
  74. 74.
    S.H. Snyder, Brain peptides as neurotransmitters, Science 209:976 (1980).CrossRefGoogle Scholar
  75. 75.
    G. Aguilera, J.P. Harwood and K.J. Catt, Somatostatin modulates effects of aniotensin II in adrenal glomerulosa zone, Nature 292:262 (1981).CrossRefGoogle Scholar
  76. 76.
    L.J. Chang, L.M. Sandler, M.E. Kraenzlin, J.M. Burrin, G.F. Joplin and S.R. Bloom, Long term treatment of acromegaly with a long acting analogue of somatostatin, Br. Med. J. 290:284 (1985).CrossRefGoogle Scholar
  77. 77.
    J.E. Gerich, Somatostatin modulation of glucagon secretion and its importance in human glucose homeostasis, Metabolism 27:1283 (1978).CrossRefGoogle Scholar
  78. 78.
    P.M. Maton, T.M. O’Dorisio, B.A. Howe, K.E. McArthur, J.M. Howard, J.A. Cherner, T.B. Malarkey, M.J. Collen, J.D. Gardner and R.T. Jensen, Effect of a long-acting somatostatin analogue (SMS 210–995) in a patient with pancreatic cholera, N. Engl. J. Med. 312:17 (1985).CrossRefGoogle Scholar
  79. 79.
    K. von Werder, M. Losa, O.A. Muller, L. Schweiberer, R. Fahlbusch and E. del Pozo, Treatment of metastasising GRF-producing tumour with a long-acting somatostatin analogue, Lancet, 2:282 (1984).CrossRefGoogle Scholar
  80. 80.
    I. Whitehouse, C. Beglinger, M. Fried and K. Gyr, The effect of an octapeptide somatostatin analog and somatostatin on pentagastrin-stimulated gastric acid secretion in man, Hepatogastroenterology 31:227 (1984).Google Scholar
  81. 81.
    I. Magnusson and T. Ihre, Does somatostatin help in upper gastrointestinal bleeding?, Lancet 1:337 (1985).CrossRefGoogle Scholar
  82. 82.
    D.F. Veber, F.W. Holly, W.J. Paleveda, R.F. Nutt, S.J. Bergstrand, M. Torchiana, M.S. Glitzer, Saperstein and R. Hirschmann, Conform-ationally restricted bicyclic analogs of somatostatin, Proc. Natl. Acad. Sci U.S.A. 75:2636 (1978).CrossRefGoogle Scholar
  83. 83.
    D.F. Veber, R.M. Freidinger, D.S. Perlow, W.J. Paleveda, F.W. Holly, R.G. Strachan, R.F. Nutt, B.H. Arison, C. Homnick, W.C. Randall, M.S. Glitzer, R. Saperstein and R. Hirschmann, A potent cyclic hexapeptide analogue of somatostatin, Nature 292:55 (1981).CrossRefGoogle Scholar
  84. 84.
    R. Palluk, W. Gaida and W. Hoefke, Atrial natriuretic factor, Life Sci. 36:1415 (1985)CrossRefGoogle Scholar
  85. 85.
    M.G. Currie, D. Sukin, D.M. Geller, B.R. Cole and P. Needleman, Atriopeptin release from the isolated perfused rabbit heart, Biochem. Biophys. Res. Comm. 124:711 (1984).CrossRefGoogle Scholar
  86. 86.
    J. Gutkowska, K. Horky, G. Thibault, P. Januszewics, M. Cantin and J. Genest, Atrial natriuretic factor is a circulating hormone, Biochem. Biophys. Res. Comm. 125:315 (1984).CrossRefGoogle Scholar
  87. 87.
    K. Kangawa, A. Fukuda and H. Matsuo, Structural identification of beta and gamma-human atrial natriuretic polypeptides, Nature 313:397 (1985).CrossRefGoogle Scholar
  88. 88.
    A.A. Seymour, E.H. Blaine, E.K. Mazack, S.G. Smith, I.I. Satabilito, A.B. Haley, M.A. Napier, M.A. Whinnery and R.F. Nutt, Renal and systemic effects of synthetic atrial natriuretic factor, Life Sci. 36:13 (1985)CrossRefGoogle Scholar
  89. 89.
    M.A. Napier, R.L. Vandlen, G. Albers-Schonberg, R.F. Nutt, S. Brady, T. Lyle, R. Winquist, E.P. Faison, L.A. Heinel and E.H. Blaine, Specific membrane receptors for atrial natriuretic factor in renal and vascular tissues, Proc. Natl. Acad. Sci. U.S.A. 81:5946 (1984).CrossRefGoogle Scholar
  90. 90.
    J. Tremblay, R. Gerzer, P. Vinay, S.C. Pang, R. Beliveau and P. Hamet, The increase of cGMP by atrial natriuretic factor correlates with the distribution of particular guanylate cyclase, FEBS Lett. 181:17 (1985)CrossRefGoogle Scholar
  91. 91.
    A.M. Richards, H. Ikram, T.G. Yandle, M.G. Nicholls, M.W.I. Webster and E.A. Espiner, Renal, haemodynamic, and hormonal effects of human alpha atrial natriuretic peptide in healthy volunteers, Lancet 1:545 (1985).CrossRefGoogle Scholar
  92. 92.
    M.A. Ondetti and D.W. Cushman, Design of protease inhibitors. Biopolymers 20:2001 (1981).CrossRefGoogle Scholar
  93. 93.
    U. Brodbeck, ed., “Enzyme Inhibitors”, Verlag Chemie, Basel (1980).Google Scholar
  94. 94.
    M.A. Ondetti, M.E. Condon, J. Reid, E.F. Sabo, H.S. Cheung and D.W. Cushman, Design of potent and specific inhibitors of carboxy-peptidases A and B, Biochemistry 18:1427 (1979).CrossRefGoogle Scholar
  95. 95.
    G. Mackaness, The Future of angiotensin-converting enzyme inhibitors, J. Cardiovasc. Pharmacol. 7:S30 (1985).CrossRefGoogle Scholar
  96. 96.
    A.A. Patchett, E. Harris, E.W. Tristram, M.J. Wyvratt, M.T. Wu, D. Taub, E.R. Peterson, T.J. Ikeler, J. ten Browke, L.G. Payne, D.L. Ondeyka, E.D. Thorsett, W.J. Greenlee, N.S. Lohr, R.D. Hoffsommer, H. Joshua, W.V. Ruyle, J.W. Rothrock, S.D. Aster, A.L. Maycock, F.M. Robinson, R. Hirschmann, C.S. Sweet, E.H. Ulm, D.M. Gross, T.C. Vassil and C.A. Stone, A new class of antiotensin-converting enzyme inhibitors, Nature 288:280 (1980).CrossRefGoogle Scholar
  97. 97.
    C.S. Sweet, A.A. Patchett, E.H. Ulm and D.M. Gross, Structure-activity studies with angiotensin converting enzyme inhibitors related to enalapril and MK-521, Roy. Soc. Chem. 50:36 (1984).Google Scholar
  98. 98.
    H.R. Brunner, J. Nussberger and B. Waeber, The present molecules of converting enzyme inhibitors, J. Cardiovasc. Pharmacol. 7:S2 (1985).CrossRefGoogle Scholar
  99. 99.
    K.G. Hofbauer and J.M. Wood, Inhibition of renin: Recent immunological and pharmacological advances, Trends in Pharm. Sci. 6:173 (1985).CrossRefGoogle Scholar
  100. 100.
    D.H. Rich, F.G. Salituro, M.W. Holladay and P.C. Schmidt, Design and discovery of aspartyl protease inhibitors, mechanistic and clinical implications, Am. Chem. Soc. (Symp. Series) 251:211 (1984).Google Scholar
  101. 101.
    M. Szelke, B. Leckie, A. Hallett, D. Jones, J. Sueiras, B. Atrash and A.F. Lever, Potent new inhibitors of human renin, Nature, 299:555 (1982).CrossRefGoogle Scholar
  102. 102.
    J. Boger, N.S. Lohr, E.H. Ulm, M. Poe, E.H. Blaine, G. Fanelli, T. Lin, L.S. Payne, T.W. Schorn, B.I. Lamont, T.C. Vassil, I.I. Stabilito, D.F. Veber, D.H. Rich and A.S. Bopari, Novel renin inhibitors containing the amino acid statine. Nature 303:81 (1983).CrossRefGoogle Scholar
  103. 103.
    D.H. Rich, E.T.O. Sun and E. Ulm, Synthesis of analogues of the carboxyprotease inhibitor pepstatin. Effect of structure on inhibition of pepsin and renin, J. Med. Chem. 23:27 (1980).CrossRefGoogle Scholar
  104. 104.
    M-C. Fournie-Zaluski, P. Chaillet, E. Soroca-Lucas, H. Marcais-Collado, J. Costentin and B. P. Roques, New carboxyalkyl inhibitors of brain enkephalinase: Synthesis, biological activity, and analgesic properties, J. Med. Chem. 26:6 (1983).CrossRefGoogle Scholar
  105. 105.
    J.M. Frere, C. Duez, J. Dusart, J. Coyette, M. Leyh-Bouille, J.M. Ghuysen, O. Dideberg and J. Knox, Mode of action of beta-lactam antibiotics at the molecular level, in: “Enzyme Inhibitors as Drugs”, Sandler, M., ed., Macmillan, London (1980).Google Scholar
  106. 106.
    J. Lamotte-Brasseur, G. Dive and J-M. Ghuysen, On the structural analogy between D-alanyl-D-alanine terminated peptides and beta-lactam antibiotics, Eur. J. Med. Chem. 19:319 (1984).Google Scholar
  107. 107.
    D.J. Waxman, R.R. Yocum and J.L. Strominger, Penicillins and cephalosporins are active site-directed acylating agents: evidence in support of the substrate analog hypothesis, Trans. Roy. Soc. London, Series B. 289:257 (1980).CrossRefGoogle Scholar
  108. 108.
    D.B. Boyd, Transition state structures of a dipeptide related to the mode of action of beta-lactam antibiotics, Proc. Natl. Acad. Sci. U.S.A. 74:5239 (1977).CrossRefGoogle Scholar
  109. 109.
    P. Charlier, O. Dideberg, J-C. Jamoulle, J-M. Frere, J-M. Ghuysen, G. Dive and J. Lammotte-Brasseur, Active-site-directed inactivators of the Zn2+-containing D-alanyl-D-alanine-cleaving carboxypeptidase of S.albus G, J. Biochem. 219:763 (1984).Google Scholar
  110. 110.
    M.P. Williamson, D.H. Williams and S.J. Hammond, Interactions of vancomycin and ristocetin with peptides as a model for protein binding, Tetrahedron 40:569 (1984).CrossRefGoogle Scholar
  111. 111.
    S. Adibi and E. Morse, The number of glycine residues which limits intact absorption of glycine oligopeptides in human jejunum, J. Clin. Invest. 60:1008 (1977).CrossRefGoogle Scholar
  112. 112.
    D.B. Silk, Peptide transport, Clin. Sci. 60:607 (1981).Google Scholar
  113. 113.
    D.M. Matthews, Intestinal absorption of peptides, Physiol. Rev. 55: 538 (1975).Google Scholar
  114. 114.
    S. Yokohama, T. Yoshioka, K. Yamashita and N. Kitamore, Intestinal absorption mechanisms of thyrotrophin-releasing hormone, J. Pharm. Dyn. 7:445 (1984).CrossRefGoogle Scholar
  115. 115.
    T. Kimura, Transmucosal absorption of small peptide drugs, Pharm. Int. 5:75 (1984).Google Scholar
  116. 116.
    K.H. Jones, P.F. Langley and L.J. Lees, Bioavailability and metabolism of talampicillin, Chemotherapy 24:217 (1978).CrossRefGoogle Scholar
  117. 117.
    D.A. Spyker, R.J. Rugleski, R.L. Vann and W. O’Brien, Pharmacokinetics of amoxicillin dose dependence after intravenous, oral and intramuscular administration, Antimicrob. Agents Chem. 11:132 (1977).CrossRefGoogle Scholar
  118. 118.
    C.G. Hertz, Serum and urinary concentrations of cyclacillin in humans, Antimicrob. Agents Chem. 4:361 (1973).CrossRefGoogle Scholar
  119. 119.
    T. Kimura, H. Endo, M. Yoshikawa, S. Muranishi and H. Sezaki, Carrier-mediated transport systems for aminopenicillins in rat small intestine, J. Pharm. Dyn. 1:262 (1978).CrossRefGoogle Scholar
  120. 120.
    E. Nakashima, A. Tsuji, S. Kagatani and T. Yamana, Intestinal absorption mechanism of amino-beta-lactam antibiotics. III. Kinetics of carrier-mediated transport across the rat small intestine in situ, J. Pharm. Dyn. 7:452 (1984).CrossRefGoogle Scholar
  121. 121.
    J.P. Clayton, M. Cole, S.W. Elson, K.D. Hardy, L.W. Mizen and R. Sutherland, Preparation, hydrolysis and oral absorption of alpha-carboxy esters of carbenicillin, J. Med. Chem. 18:172 (1985).CrossRefGoogle Scholar
  122. 122.
    S. Hartley and R. Wise, A three way crossover study to compare pharmacokinetics and acceptability of sultamicillin at two dose levels with that of ampicillin, J. Antimicrob. Chem. 10:49 (1982).CrossRefGoogle Scholar
  123. 123.
    D.J. Tacco, A. deLuna, A.E. Duncan, T.C. Vassil and E.H. Ulm, The physiological disposition and metabolism of enalapril maleate in laboratory animals, Drug Met. Disp. 10:15 (1982).Google Scholar
  124. 124.
    H.G. Eckert, M.J. Badian, D. Gantz, H.M. Kellner and M. Volz, Pharmacokinetics and biotransformation of Hoe-498 in rat, dog and man, Arzneim. Forschung. 34:1435 (1984).Google Scholar
  125. 125.
    D.A. Grant, T.F. Ford and R.J. McCulloch, Distribution of pepstatine and statine following oral and intravenous administration in rats. Tissue localisation by whole body autoradiography, Biochem. Pharm. 31:2302 (1982).CrossRefGoogle Scholar
  126. 126.
    J.P. Baker, B.H. Kemmenoe, C. McMartin and G.E. Peters, Pharmacokinetics, distribution and elimination of a synthetic octapeptide analogue of somatostatin in the rat, Reg. Peptides. 9:213 (1984).CrossRefGoogle Scholar
  127. 127.
    J. Bell, G.E. Peters, C. McMartin, N.W. Thomas and C.G. Wilson, Estimation of gut absorption of peptides by biliary sampling, J. Pharm. Pharmacol. 36:88P (1984).Google Scholar
  128. 128.
    A.J. Wood, G. Maurer, W. Niederberger and T. Beveridge, Cyclosporine: pharmacokinetics metabolism, and drug interactions, Transplant Proc. 15:2409 (1983).Google Scholar
  129. 129.
    C.T. Veda, M. Lemaire, G. Gsell and K. Nussbaumer, Intestinal lymphatic absorption of cyclosporin following oral administration in an olive oil solution in rats, Biopharm. Drug Disp. 4:113 (1983).CrossRefGoogle Scholar
  130. 130.
    H. Okada, I. Yamazaki, Y. Ogawa, S. Hirai, H. Okada, T. Yashiki and H. Mima, Vaginal absorption of a potent luteinizing hormone-releasing hormone analog (Leuprolide) in Rats I: Absorption by various routes and absorption enhancement, J. Pharm. Sci. 71:1367 (1982).CrossRefGoogle Scholar
  131. 131.
    H. Yoshida, K.O. Kumura, R. Hori, T. Anmo and H. Yamaguchi, Absorption of insulin delivered to rabbit trachea using aerosol dosage form, J. Pharm. Sci. 68:670 (1979).CrossRefGoogle Scholar
  132. 132.
    S. Hirai, T. Yashiki, T. Matsuzawa and H. Mima, Absorption of drugs from the nasal mucosa of rat, Int. J. Pharm. 7:317 (1981).CrossRefGoogle Scholar
  133. 133.
    C. Bergquist, S.J. Nillius and L. Wide, Intranasal gonadotropin-releasing hormone agonist as a contraceptive agent, Lancet 2:215 (1979).CrossRefGoogle Scholar
  134. 134.
    M.K. Ward and T.R. Fraser, DDAVP in treatment of vasopressin-sensitive diabetes insipidus, Brit. Med. J. 3:86 (1974).CrossRefGoogle Scholar
  135. 135.
    S. Hirai, T. Yashiki and H. Mima, Effects of surfactants on the nasal absorption of insulin in rats, Int. J. Pharm. 9:165 (1981).CrossRefGoogle Scholar
  136. 136.
    G.E. Peters, Distribution and metabolism of exogenous somatostatin in the rat, Reg. Peptides 3:361 (1982).CrossRefGoogle Scholar
  137. 137.
    D. Brewster, M.J. Humphrey and M.V. Wareing, Metabolism and pharmacokinetics of TRH and an analogue with enhanced neuropharmacological potency, Neuropeptides 1:153 (1981).CrossRefGoogle Scholar
  138. 138.
    K.S. Pang, W.F. Cherry, J.A. Terrell and E.H. Ulm, Disposition of enalapril and its diacid metabolite enalaprilat in a perfused rat liver preparation. Presence of a diffusional barrier for enalaprilat into hepatocytes, Drug Met. Disp. 12:309 (1984).Google Scholar
  139. 139.
    G. Metcalf, P.W. Dettmar, A. Lynn, D. Brewster and M.E. Havler, Thyrotrophin-releasing hormone (TRH) analogues show enhanced CNS selectivity because of increased biological stability, Reg. Peptides, 2:277 (1981).CrossRefGoogle Scholar
  140. 140.
    S. Sarhan, M. Kolb and N. Seiler, The amolification of the anticonvulsant effect of vinyl GABA (4-aminohexenoic acid) by esters of glycine, Arzneim. Forsch. 34:687 (1984).Google Scholar
  141. 141.
    P.S. Callery, L.A. Geelhaar, M.S. Balachandran Nayar, M. Stogniew and K. Gurudarh Rao, Pyrrolines as pro-drugs of gamma-aminobutyric acid analogues, J. Neurochem. 38:1064 (1982).CrossRefGoogle Scholar
  142. 142.
    D. Roemer and J. Pless, Structure activity relationship of orally active enkephalin analogues as analgesics, Life Sci. 24:621 (1979).CrossRefGoogle Scholar
  143. 143.
    R.M. Freidinger and P.F. Veber, Design of novel cyclic hexapeptide somatostatin analogs from a model of the bioactive conformation, Am. Chem. Soc. (Symp. Series) 251:169 (1984).Google Scholar
  144. 144.
    R. Freidinger and D. Veber, Design of novel cyclic hexapeptide somatostatin analogs from a model of the bioactive conformation, Am. Chem. Soc. (Symp. Series) 251:169 (1984).Google Scholar
  145. 145.
    R.H. Rippel, E.S. Johnson, W.F. White, M. Fujino, T. Fukuda and S. Kobayashi, Ovulation and gonadotrophin-releasing activity of [D-Leu6,desGlyNH2 10, Pro-ethylamide9]-GNRH(38715), Proc. Soc. Exp. Biol. Med. 148:1193 (1975).Google Scholar
  146. 146.
    K. Wiedhaup, The stability of small peptides in the gastrointestinal tract, in: ‘Topics in Pharmaceutical Sciences’, Breimer, D. and Speiser, P., eds., Elsevier/North Holland Biomedical Press, Amsterdam, (1981).Google Scholar
  147. 147.
    G. Maurer, H.R. Loosli, E. Schreier and B. Keller, Disposition of cyclosporine in several animal species and man. Structural elucidation of its metabolites, Drug Met. Disp. 12:120 (1984).Google Scholar
  148. 148.
    H. Kroppe, J.G. Sundelof, R. Hajdu and F.M. Kahan, Metabolism of thienamycin and related carbapenem antibiotics by the renal dipeptidase, dehydropeptidase-I, Antimicrob. Agents Chem. 22:62 (1982).CrossRefGoogle Scholar
  149. 149.
    CD. Klaassen and J.B. Watkins, Mechanism of bile formation hepatic uptake and biliary excretion, Pharmacol. Rev. 36:1 (1984).Google Scholar
  150. 150.
    V.J. Hruby, Design of peptide hormone and neurotransmitter analogues, Trends in Pharm. Sci., 6:259 (1985).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • P. S. Ringrose
    • 1
  • M. J. Humphrey
    • 1
  1. 1.Pfizer Central ResearchSandwich, KentUK

Personalised recommendations