Skip to main content

Part of the book series: NATO ASI Series ((NSSA,volume 113))

  • 158 Accesses

Abstract

The discovery of diverse neurohormonal and other biologically active peptides has increased interest in exploiting peptide mimetics as therapeutic drugs.1–4 The high potency, local synthesis/release and rapid in-activation of natural peptides can cause particular problems in designing synthetic drug molecules that are both selective and have reasonable duration of action. Selective drug targeting is usually achieved by specific agonist/antagonist activity for a particular cell surface receptor or by specific interaction with an enzyme active site on a peptidase, which in turn is involved in either activating or deactivating a biologically active peptide. Synthetic peptides also have utility in facilitating the selective uptake of other drug molecules into target tissues by exploiting permease specificities and in some cases the specific tissue localization of peptidases. These mechanisms will be discussed with examples of carrier peptides and peptides targeted on specific receptors. Particular comment will, however, also be made of the pharmacokinetic problems encountered with peptide drugs the route of drug administration, intestinal absorption, metabolic stability, target tissue distribution and renal vs. biliary excretion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.S. Ringrose, Small peptides as carriers and tar.gets in human therapy, Biochem. Soc. Trans. 11:804 (1983).

    CAS  Google Scholar 

  2. P.S. Ringrose, Warhead-delivery and suicide substrates as concepts in antimicrobial drug design, Soc. Gen. Microbiol. Sumposium 35, F. O’Grady and D. Greenwood, eds., Cambridge University Press, Cambridge, (1985).

    Google Scholar 

  3. V.J. Hruby, Design of peptide superagonists and antagonists, conformational and dynamic considerations, Amer. Chem. Soc. 251:9 (1984).

    CAS  Google Scholar 

  4. V.J. Hruby, J.L. Krstenansky and W.L. Cody, Recent progress in the rational design of peptide hormones and neurotransmitters, Ann. Rep. Med. Chem. 19:303 (1984).

    Article  CAS  Google Scholar 

  5. P.S. Ringrose, Peptides as antimicrobial agents, in: “Microorganisms and Nitrogen Sources”. J.W. Payne, ed., John Wiley & Sons, Chichester (1980).

    Google Scholar 

  6. I. Chopra and P. Ball, Transport of antibiotics into bacteria, Adv. Microb. Physiol. 23:183 (1982).

    Article  CAS  Google Scholar 

  7. P.S. Ringrose, Expolitation of the bacterial envelope: rational design of antibacterial agents, Med. Microbiol. 3:179 (1983).

    CAS  Google Scholar 

  8. D. Steiner, D. Quinn, S. Chan, J. Marsh and H. Tager, Processing mechanisms in the biosynthesis of proteins, Ann. NY. Acad. Sci. 343:1 (1980)

    Article  CAS  Google Scholar 

  9. F.E. Bloom, The endorphins: A growing family of pharmacologically pertinant peptides, Ann.Rev. Pharmacol. Toxicol. 23:151 (1983).

    Article  CAS  Google Scholar 

  10. R.B. Dickson, Endocytosis of polypeptides and their receptors, Trends in Pharm. Sci. 6:164 (1985).

    Article  CAS  Google Scholar 

  11. J.G. Allen, F.R. Atherton, M.J. Hall, C.H. Hassall, S.W. Holmes, R.W. Lambert, L.J. Nisbet and P.S. Ringrose, Phosphonopeptides, a new class of synthetic antibacterial agents, Nature 272:56 (1978).

    Article  CAS  Google Scholar 

  12. J.G. Allen, F.R. Atherton, M.J. Hall, C.H. Hassall, S.W. Holmes, R.W. Lambert, L.J. Nisbet and P.S. Ringrose, Phosphonopeptides as antibacterial agents: alaphosphin and related phosphonopeptides, Antimicrob. Agents Chem. 15:684 (1979).

    Article  CAS  Google Scholar 

  13. F.R. Atherton, M.J. Hall, C.H. Hassall, R.W. Lambert and P.S. Ringrose, Phosphonopeptides as antibacterial agents: rationale, chemistry, and structure-activity relationships. Antimicrob. Agents Chem. 15:677 (1979).

    Article  CAS  Google Scholar 

  14. F.R. Atherton, M.J. Hall, C.H. Hassall, R.W. Lambert, W.J. Lloyd and P.S. Ringrose, Phosphonopeptides as antibacterial agents: mechanism of action of alaphosphin, Antimicrob. Agents Chem. 15:696 (1979).

    Article  CAS  Google Scholar 

  15. F.R. Atherton, M.J. Hall, C.H. Hassall, S.W. Holmes, R.W. Lambert, W.J. Lloyd and P.S. Ringrose, Phosphonopeptide antibacterial agents related to alafosfalin: design, synthesis and structure-activity relationships, Antimicrob. Agents Chem. 18:897 (1980).

    Article  CAS  Google Scholar 

  16. F.R. Atherton, M.J. Hall, C.H. Hassall, R.W. Lambert, W.J. Lloyd, A.V. Lord, P.S. Ringrose and D. Westmacott, Phosphonopeptides as substrates for peptide transport systems and peptidases of E.coli, Antimicrob. Agents Chem. 24:522 (1983).

    Article  CAS  Google Scholar 

  17. J.G. Allen, L. Havas, E. Leicht, I. Lenox-Smith and L.J. Nisbet, Phosphonopeptides as antibacterial agents: metabolism and pharmacokinetics of alafosfalin in animals and humans, Antimicrob. Agents Chem. 16:306 (1979).

    Article  CAS  Google Scholar 

  18. B.N. Ames, F.L. Ames, J.D. Young, D. Tsuchiya and J. Lecocq, Illicit transport: the oligopeptide permease, Proc. Natl. Acad. Sci. USA 70:456 (1973).

    Article  CAS  Google Scholar 

  19. C. Gilvarg, Portage transport, in: “The Future of Antibiotherapy and Antibiotic Research”, Ninet, L., Bost, P.E., Bouanchaud, D.H. and Florent, J., eds., Academic Press, London (1981).

    Google Scholar 

  20. J.W. Payne, J.S. Morley, P. Armitage and G.M. Payne, Transport and hydrolysis of antibacterial peptide analogues in E.coli: Backbone modified aminoxy peptides, J. Gen. Microbiol. 130:2253 (1984).

    CAS  Google Scholar 

  21. J.S. Morley, J.W. Payne and T.D. Hennessey. Antibacterial activity and uptake into E.coli of backbone-modified analogues of small peptides, J. Gen. Microbiol. 129:3701 (1983).

    CAS  Google Scholar 

  22. J.S. Morley, T.D. Hennessey and J.W. Payne, Backbone-modified analogues of small peptides: transport and antibacterial activity. Biochem. Soc. Trans. 11:798 (1983).

    CAS  Google Scholar 

  23. H. Diddens, M. Dorgerloh and H. Zahner, Metabolic products of micro-organisms. On the transport of small peptide antibiotics in bacteria, J. Antibiotics 32:87 (1979).

    Article  CAS  Google Scholar 

  24. T. Kametani, K. Kigasawa, M. Hiiragi, K. Wakisaka, S. Haga, H. Sugi, K. Tanigawa, Y. Suzuki, K. Fukara, O. Irino, O. Saita and S. Yamabe, Studies on the synthesis of chemotherapeutics, Heterocycles 16: 1205 (1981).

    Article  CAS  Google Scholar 

  25. R.A. Payne and C.H. Stammer, Cycloserine peptides, J. Org. Chem. 33: 2421 (1968).

    Article  CAS  Google Scholar 

  26. A.S. Steinfeld, F. Naider and J.M. Becker, Anticandidal activity of 5-fluorocytosine-peptide conjugates, J. Med. Chem. 22:1104 (1979).

    Article  CAS  Google Scholar 

  27. W.D. Kingsbury, J.C. Boehm, R.J. Mehta, S.F. Grappel and C. Gilvarg, A novel peptide delivery system involving peptidase activated prodrugs as antimicrobial agents. Synthesis and biological activity of peptidyl derivatives of 5-fluorouracil, J. Med. Chem. 27:1447 (1984).

    Article  CAS  Google Scholar 

  28. J.S. Ti, A.S. Steinfeld and F. Naider, Anticandidal activity of pyrimidine-peptide conjugates, J. Med. Chem. 23:913 (1980).

    Article  CAS  Google Scholar 

  29. W.D. Lichliter, F. Naider and J.M. Becker, Basis for the design of anticandidal agents from studies of peptide utilization in Candida albicans, Antimicrob. Agents Chem. 10:483 (1976).

    Article  CAS  Google Scholar 

  30. P.J. McCarthy, P.F. Troke and K. Gull, Mechanism of action of nikkomycin and the peptide transport system of Candida albicans, J. Gen. Microbiol. 131:775 (1985).

    CAS  Google Scholar 

  31. F. Naider, P. Shenbagamurthi, A.S. Steinfeld, H.A. Smith, C. Boney and J.M. Becker, Synthesis and biological activity of tripeptidyl polyoxins as antifungal agents, Antimicrob. Agents Chem. 24:787 (1983).

    Article  CAS  Google Scholar 

  32. H. Bruckner, G. Jung, R.G. Werner and K.R. Appel, Synthesis and biological activities of the tri-L-alanine derivative of isonicotinic acid hydrazide, Arzneimittel-Forschung 33:1630 (1983).

    CAS  Google Scholar 

  33. J.W. Payne, Transport and utilization of peptides by bacteria, in: “Microorganisms and Nitrogen Sources”. J.W. Payne, ed., J. Wiley & Sons, Chichester, (1980).

    Google Scholar 

  34. C.L. Hermsdorf and S. Simmonds, Role of peptidases in utilization and transport of peptides by bacteria, in: “Microorganisms and Nitrogen Sources”. Payne, J.W. ed., J. Wiley & Sons, Chichester, (1980).

    Google Scholar 

  35. J.C. Boehm, W.D. Kingsbury, D. Perry and C. Gilvarg, The use of cysteinyl peptides to effect portage transport of sulfhydryl-containing compounds in E.coli, J. Biol. Chem. 258:14850 (1983).

    CAS  Google Scholar 

  36. W.D. Kingsbury, J. Boehm, D. Perry, and C. Gilvarg, Portage of various compounds into bacteria by attachment to glycine residues in peptides, Proc. Natl. Acad. Sci., U.S.A. 81:4573 (1984).

    Article  CAS  Google Scholar 

  37. C.T. Walsh, Suicide substrates: mechanism-based enzyme inactivators: Recent Developments, Ann. Rev. Biochem. 53:493 (1984).

    Article  CAS  Google Scholar 

  38. K-S Cheung, S.A. Wasserman, E. Dudek, S.A. Lerner and M. Johnston, Chloroalanyl and propargylglycyl dipeptides. Suicide substrate containing antibacterials, J. Med. Chem. 26:1733 (1983).

    Article  CAS  Google Scholar 

  39. D. Perry and E.P. Abraham, Transport and metabolism of bacilysin and other peptides by suspensions of Staphylococcus aureus, J. Gen. Microbiol. 115:213 (1979).

    Article  CAS  Google Scholar 

  40. P.L. Carl, P.K. Chakravarty, J.A. Katzenellenbogen and M.J. Weber, Protease-activated ‘prodrugs’ for cancer therapy, Proc. Natl. Acad. Sci. U.S.A. 77:2224 (1980).

    Article  CAS  Google Scholar 

  41. P.K. Chakravarty, P.L. Carl, M.J. Weber and J.A. Katzenellenbogen, Plasmin-activated prodrugs for cancer chemotherapy. 2. Synthesis and biological activity of peptidyl derivatives of doxorubicin, J. Med. Chem. 26:638 (1983).

    Article  CAS  Google Scholar 

  42. P.K. Chakravarty, P.L. Carl, M.J. Wever and J.A. Katsenellenbogen, Plasmin-activated prodrugs for cancer chemotherapy. 1. Synthesis and biological activity of peptidylacivicin and peptidylphenylenedi-amine mustard, J. Med. Chem. 26:633 (1983).

    Article  CAS  Google Scholar 

  43. R.L. Firestone, J.M. Pisano, P.J. Bailey, A. Sturm, R.J. Bonney, P. Wightman, R. Devlin, C.S. Lin, D.L. Keller and P.C. Tway, Lysosomotropic agents. 4. Carbobenzoxyglycylphenylalanyl, a new protease-sensitive masking group for introduction in cells. J. Med. Chem. 25:539 (1982).

    Article  CAS  Google Scholar 

  44. M. Masquelier, R. Baurain and A. Trouet, Amino acid and dipeptide derivatives of daunorubicin. 1. Synthesis, physiocochemical properties, and lysosomal digestion. J. Med. Chem. 23:1166 (1980).

    Article  CAS  Google Scholar 

  45. M.M. Ponpipom, R.L. Bugianesi, J.C. Robbins, T.W. Doebber and T.Y. Shen, Cell-specific ligands for selective drug delivery to tissues and organs, J. Med. Chem. 24:1388 (1981).

    Article  CAS  Google Scholar 

  46. R.H. Goldfarb, Proteases in tumor invasion and metastasis, in: “Tumor Invasion and Metastasis”, Liotta, L.A. and Hart, I.R., eds., Martinus Nijhoff, The Hague (1982).

    Google Scholar 

  47. S.D.J. Magnan, F.N. Shirota and H.T. Nagasawa, Drug latentiation by gamma-glutamyl transpeptidase, J. Med. Chem. 25:1018 (1982).

    Article  CAS  Google Scholar 

  48. T.M. Dolak and L.I. Goldberg, Renal blood flow and dopaminergic agonists, Ann. Rep. Med. Chem. 11:103 (1981).

    Article  Google Scholar 

  49. M.R. Lee, Dopamine and the Kidney, Clin. Sci. 62:439 (1982).

    CAS  Google Scholar 

  50. S. Wilk, H. Mizoguchi and M. Orlowski, Gamma-glutamyl Dopa: A kidney-specific dopamine precursor, J. Pharm. Exp. Ther. 206:227 (1978).

    CAS  Google Scholar 

  51. D. Worth, J. Brown, J. Cooke, J. Harvey and M.R. Lee, The effect of intravenous gamma-glutamyl L-DOPA on renal function in normal volunteers, Clin. Sci. 66:13 (1984).

    Google Scholar 

  52. M. Orlowski, H. Mizoguchi and S. Wilk, N-Acyl-gamma-glutamyl derivatives of sulfamethoxazole as models of kidney-selective prodrugs, J. Pharm. Exp. Ther. 212:167 (1980).

    CAS  Google Scholar 

  53. L.L. Iversen, Nonopioid neuropeptides in mammalian CNS, Ann. Rev. Pharmacol. Toxicol. 23:1 (1983).

    Article  CAS  Google Scholar 

  54. I. Sami and M.D. Said, Vasoactive peptides: state of the art review. Hypertension, 5 (Suppl.l):l (1983).

    Google Scholar 

  55. J.S. Morley, Modulation of the action of regulatory peptides by structural modification, Trends in Pharm. Sci. 1:463 (1980).

    Article  CAS  Google Scholar 

  56. G.M. Makhlouf, Enteric neuropeptides: Role in neuromuscular activity of the gut, Trends in Pharm. Sci. 6:214 (1985).

    Article  CAS  Google Scholar 

  57. T. Hokfelt, O. Johansson, A. Ljungdahl, J.M. Lundberg and M. Schultzberg, Peptidergic neurones, Nature 284:515 (1980).

    Article  CAS  Google Scholar 

  58. S. Undenfriend and D.L. Kilpatrick, Biochemistry of the enkephalin- and enkephalin-containing peptides. Arch. Biochem. Biophys. 2211: 309 (1983).

    Article  Google Scholar 

  59. J. DiMaio and P.W. Schiller, A cyclic enkephalin analog with high in-vitro opiate activity, Proc. Natl. Acad. Sci. U.S.A. 77:7162 (1980).

    Article  CAS  Google Scholar 

  60. J. DiMaio, T.M-D. Nguyen, C. Lemieux and P.W. Schiller, Synthesis and pharmacological characterization in-vitro of cyclic enkephalin analogues: Effect of conformational constraints on opiate receptor selectivity, J. Med. Chem. 25:1432 (1982).

    Article  CAS  Google Scholar 

  61. J.L. Krstenansky, R.L. Baranowski and B.L. Currie, A new approach to conformationally restricted peptide analogs: Rigid beta-bends. 1. Enkephalin as an example, Biochem. Biophys. Res. Comm. 109: 1368 (1982).

    Article  CAS  Google Scholar 

  62. A. Camerman, D. Mastropaolo, I. Karle, J. Karle and N. Camerman, Crystal Structure of Leucine-Enkephalin, Nature 306:447 (1983).

    Article  CAS  Google Scholar 

  63. G.D. Smith and J.F. Griffin, Conformation of [Leu5]-enkephalin from X-ray diffraction: Features important for recognition at opiate receptor, Science 199:1214 (1978).

    Article  CAS  Google Scholar 

  64. A.F. Spatola, Peptides of the hypothalamus, Ann. Rep. Med. Chem. 19:199 (1981).

    Article  Google Scholar 

  65. A.J. Prange and C.B. Nemeroff, Peptides in the central nervous system: focus on thyrotropin releasing hormone and neurotensin, Ann. Rep. Med. Chem. 17:31 (1982).

    Article  CAS  Google Scholar 

  66. A. Peterkofsky, F. Battaini, Y. Koch, Y. Takahara and P. Dannies, Histidyl-proline diketopiperazine: Its biological role as a regulatory peptide, Mol. Cell. Biochem. 42:45 (1982).

    Article  CAS  Google Scholar 

  67. M. Hichens, A comparison of thyrotropin – releasing hormone with analogues: influence of disposition upon pharmacology, Drug Met. Rev. 14:77 (1983).

    Article  CAS  Google Scholar 

  68. N.A. Sharif, Diverse roles of thyrotropin-releasing hormone in brain, pituitary and spinal function, Trends in Pharm. Sci. 6:119 (1985).

    Article  CAS  Google Scholar 

  69. J.C. Buckingham, Hypothalamic releasing hormones, Trends in Pharm. Sci. 2:335 (1981).

    Article  CAS  Google Scholar 

  70. H.M. Fraser, A new class of contraceptives, Nature 296:391 (1982).

    Article  CAS  Google Scholar 

  71. R.M. Freidinger, D.F. Veber, D.S. Perlow, Bioactive conformation of luteinizing hormone-releasing hormone: evidence from a conformationally constrained analog, Science 210:656 (1980).

    Article  CAS  Google Scholar 

  72. W.K. Burn, D. Machin, W.E. Waters, Biodegradable polymer luteinising hormone releasing hormone analogue for prostatic cancer: Use of a new peptide delivery system, Br. Med. J. 289:1580 (1984).

    Article  Google Scholar 

  73. T.W. Redding, A.V. Schally, T.R. Tice and W.E. Meyers, Long-acting delivery systems for peptides: Inhibition of rat prostate tumors by controlled release of [D-Trp6] luteinizing hormone-releasing hormone from injectable microcapsules, Proc. Natl. Acad. Sci. U.S.A. 81:5845 (1984).

    Article  CAS  Google Scholar 

  74. S.H. Snyder, Brain peptides as neurotransmitters, Science 209:976 (1980).

    Article  CAS  Google Scholar 

  75. G. Aguilera, J.P. Harwood and K.J. Catt, Somatostatin modulates effects of aniotensin II in adrenal glomerulosa zone, Nature 292:262 (1981).

    Article  CAS  Google Scholar 

  76. L.J. Chang, L.M. Sandler, M.E. Kraenzlin, J.M. Burrin, G.F. Joplin and S.R. Bloom, Long term treatment of acromegaly with a long acting analogue of somatostatin, Br. Med. J. 290:284 (1985).

    Article  Google Scholar 

  77. J.E. Gerich, Somatostatin modulation of glucagon secretion and its importance in human glucose homeostasis, Metabolism 27:1283 (1978).

    Article  CAS  Google Scholar 

  78. P.M. Maton, T.M. O’Dorisio, B.A. Howe, K.E. McArthur, J.M. Howard, J.A. Cherner, T.B. Malarkey, M.J. Collen, J.D. Gardner and R.T. Jensen, Effect of a long-acting somatostatin analogue (SMS 210–995) in a patient with pancreatic cholera, N. Engl. J. Med. 312:17 (1985).

    Article  CAS  Google Scholar 

  79. K. von Werder, M. Losa, O.A. Muller, L. Schweiberer, R. Fahlbusch and E. del Pozo, Treatment of metastasising GRF-producing tumour with a long-acting somatostatin analogue, Lancet, 2:282 (1984).

    Article  Google Scholar 

  80. I. Whitehouse, C. Beglinger, M. Fried and K. Gyr, The effect of an octapeptide somatostatin analog and somatostatin on pentagastrin-stimulated gastric acid secretion in man, Hepatogastroenterology 31:227 (1984).

    CAS  Google Scholar 

  81. I. Magnusson and T. Ihre, Does somatostatin help in upper gastrointestinal bleeding?, Lancet 1:337 (1985).

    Article  Google Scholar 

  82. D.F. Veber, F.W. Holly, W.J. Paleveda, R.F. Nutt, S.J. Bergstrand, M. Torchiana, M.S. Glitzer, Saperstein and R. Hirschmann, Conform-ationally restricted bicyclic analogs of somatostatin, Proc. Natl. Acad. Sci U.S.A. 75:2636 (1978).

    Article  CAS  Google Scholar 

  83. D.F. Veber, R.M. Freidinger, D.S. Perlow, W.J. Paleveda, F.W. Holly, R.G. Strachan, R.F. Nutt, B.H. Arison, C. Homnick, W.C. Randall, M.S. Glitzer, R. Saperstein and R. Hirschmann, A potent cyclic hexapeptide analogue of somatostatin, Nature 292:55 (1981).

    Article  CAS  Google Scholar 

  84. R. Palluk, W. Gaida and W. Hoefke, Atrial natriuretic factor, Life Sci. 36:1415 (1985)

    Article  CAS  Google Scholar 

  85. M.G. Currie, D. Sukin, D.M. Geller, B.R. Cole and P. Needleman, Atriopeptin release from the isolated perfused rabbit heart, Biochem. Biophys. Res. Comm. 124:711 (1984).

    Article  CAS  Google Scholar 

  86. J. Gutkowska, K. Horky, G. Thibault, P. Januszewics, M. Cantin and J. Genest, Atrial natriuretic factor is a circulating hormone, Biochem. Biophys. Res. Comm. 125:315 (1984).

    Article  CAS  Google Scholar 

  87. K. Kangawa, A. Fukuda and H. Matsuo, Structural identification of beta and gamma-human atrial natriuretic polypeptides, Nature 313:397 (1985).

    Article  CAS  Google Scholar 

  88. A.A. Seymour, E.H. Blaine, E.K. Mazack, S.G. Smith, I.I. Satabilito, A.B. Haley, M.A. Napier, M.A. Whinnery and R.F. Nutt, Renal and systemic effects of synthetic atrial natriuretic factor, Life Sci. 36:13 (1985)

    Article  Google Scholar 

  89. M.A. Napier, R.L. Vandlen, G. Albers-Schonberg, R.F. Nutt, S. Brady, T. Lyle, R. Winquist, E.P. Faison, L.A. Heinel and E.H. Blaine, Specific membrane receptors for atrial natriuretic factor in renal and vascular tissues, Proc. Natl. Acad. Sci. U.S.A. 81:5946 (1984).

    Article  CAS  Google Scholar 

  90. J. Tremblay, R. Gerzer, P. Vinay, S.C. Pang, R. Beliveau and P. Hamet, The increase of cGMP by atrial natriuretic factor correlates with the distribution of particular guanylate cyclase, FEBS Lett. 181:17 (1985)

    Article  CAS  Google Scholar 

  91. A.M. Richards, H. Ikram, T.G. Yandle, M.G. Nicholls, M.W.I. Webster and E.A. Espiner, Renal, haemodynamic, and hormonal effects of human alpha atrial natriuretic peptide in healthy volunteers, Lancet 1:545 (1985).

    Article  CAS  Google Scholar 

  92. M.A. Ondetti and D.W. Cushman, Design of protease inhibitors. Biopolymers 20:2001 (1981).

    Article  CAS  Google Scholar 

  93. U. Brodbeck, ed., “Enzyme Inhibitors”, Verlag Chemie, Basel (1980).

    Google Scholar 

  94. M.A. Ondetti, M.E. Condon, J. Reid, E.F. Sabo, H.S. Cheung and D.W. Cushman, Design of potent and specific inhibitors of carboxy-peptidases A and B, Biochemistry 18:1427 (1979).

    Article  CAS  Google Scholar 

  95. G. Mackaness, The Future of angiotensin-converting enzyme inhibitors, J. Cardiovasc. Pharmacol. 7:S30 (1985).

    Article  Google Scholar 

  96. A.A. Patchett, E. Harris, E.W. Tristram, M.J. Wyvratt, M.T. Wu, D. Taub, E.R. Peterson, T.J. Ikeler, J. ten Browke, L.G. Payne, D.L. Ondeyka, E.D. Thorsett, W.J. Greenlee, N.S. Lohr, R.D. Hoffsommer, H. Joshua, W.V. Ruyle, J.W. Rothrock, S.D. Aster, A.L. Maycock, F.M. Robinson, R. Hirschmann, C.S. Sweet, E.H. Ulm, D.M. Gross, T.C. Vassil and C.A. Stone, A new class of antiotensin-converting enzyme inhibitors, Nature 288:280 (1980).

    Article  CAS  Google Scholar 

  97. C.S. Sweet, A.A. Patchett, E.H. Ulm and D.M. Gross, Structure-activity studies with angiotensin converting enzyme inhibitors related to enalapril and MK-521, Roy. Soc. Chem. 50:36 (1984).

    Google Scholar 

  98. H.R. Brunner, J. Nussberger and B. Waeber, The present molecules of converting enzyme inhibitors, J. Cardiovasc. Pharmacol. 7:S2 (1985).

    Article  Google Scholar 

  99. K.G. Hofbauer and J.M. Wood, Inhibition of renin: Recent immunological and pharmacological advances, Trends in Pharm. Sci. 6:173 (1985).

    Article  CAS  Google Scholar 

  100. D.H. Rich, F.G. Salituro, M.W. Holladay and P.C. Schmidt, Design and discovery of aspartyl protease inhibitors, mechanistic and clinical implications, Am. Chem. Soc. (Symp. Series) 251:211 (1984).

    CAS  Google Scholar 

  101. M. Szelke, B. Leckie, A. Hallett, D. Jones, J. Sueiras, B. Atrash and A.F. Lever, Potent new inhibitors of human renin, Nature, 299:555 (1982).

    Article  CAS  Google Scholar 

  102. J. Boger, N.S. Lohr, E.H. Ulm, M. Poe, E.H. Blaine, G. Fanelli, T. Lin, L.S. Payne, T.W. Schorn, B.I. Lamont, T.C. Vassil, I.I. Stabilito, D.F. Veber, D.H. Rich and A.S. Bopari, Novel renin inhibitors containing the amino acid statine. Nature 303:81 (1983).

    Article  CAS  Google Scholar 

  103. D.H. Rich, E.T.O. Sun and E. Ulm, Synthesis of analogues of the carboxyprotease inhibitor pepstatin. Effect of structure on inhibition of pepsin and renin, J. Med. Chem. 23:27 (1980).

    Article  CAS  Google Scholar 

  104. M-C. Fournie-Zaluski, P. Chaillet, E. Soroca-Lucas, H. Marcais-Collado, J. Costentin and B. P. Roques, New carboxyalkyl inhibitors of brain enkephalinase: Synthesis, biological activity, and analgesic properties, J. Med. Chem. 26:6 (1983).

    Article  Google Scholar 

  105. J.M. Frere, C. Duez, J. Dusart, J. Coyette, M. Leyh-Bouille, J.M. Ghuysen, O. Dideberg and J. Knox, Mode of action of beta-lactam antibiotics at the molecular level, in: “Enzyme Inhibitors as Drugs”, Sandler, M., ed., Macmillan, London (1980).

    Google Scholar 

  106. J. Lamotte-Brasseur, G. Dive and J-M. Ghuysen, On the structural analogy between D-alanyl-D-alanine terminated peptides and beta-lactam antibiotics, Eur. J. Med. Chem. 19:319 (1984).

    CAS  Google Scholar 

  107. D.J. Waxman, R.R. Yocum and J.L. Strominger, Penicillins and cephalosporins are active site-directed acylating agents: evidence in support of the substrate analog hypothesis, Trans. Roy. Soc. London, Series B. 289:257 (1980).

    Article  CAS  Google Scholar 

  108. D.B. Boyd, Transition state structures of a dipeptide related to the mode of action of beta-lactam antibiotics, Proc. Natl. Acad. Sci. U.S.A. 74:5239 (1977).

    Article  CAS  Google Scholar 

  109. P. Charlier, O. Dideberg, J-C. Jamoulle, J-M. Frere, J-M. Ghuysen, G. Dive and J. Lammotte-Brasseur, Active-site-directed inactivators of the Zn2+-containing D-alanyl-D-alanine-cleaving carboxypeptidase of S.albus G, J. Biochem. 219:763 (1984).

    CAS  Google Scholar 

  110. M.P. Williamson, D.H. Williams and S.J. Hammond, Interactions of vancomycin and ristocetin with peptides as a model for protein binding, Tetrahedron 40:569 (1984).

    Article  CAS  Google Scholar 

  111. S. Adibi and E. Morse, The number of glycine residues which limits intact absorption of glycine oligopeptides in human jejunum, J. Clin. Invest. 60:1008 (1977).

    Article  CAS  Google Scholar 

  112. D.B. Silk, Peptide transport, Clin. Sci. 60:607 (1981).

    CAS  Google Scholar 

  113. D.M. Matthews, Intestinal absorption of peptides, Physiol. Rev. 55: 538 (1975).

    Google Scholar 

  114. S. Yokohama, T. Yoshioka, K. Yamashita and N. Kitamore, Intestinal absorption mechanisms of thyrotrophin-releasing hormone, J. Pharm. Dyn. 7:445 (1984).

    Article  CAS  Google Scholar 

  115. T. Kimura, Transmucosal absorption of small peptide drugs, Pharm. Int. 5:75 (1984).

    CAS  Google Scholar 

  116. K.H. Jones, P.F. Langley and L.J. Lees, Bioavailability and metabolism of talampicillin, Chemotherapy 24:217 (1978).

    Article  CAS  Google Scholar 

  117. D.A. Spyker, R.J. Rugleski, R.L. Vann and W. O’Brien, Pharmacokinetics of amoxicillin dose dependence after intravenous, oral and intramuscular administration, Antimicrob. Agents Chem. 11:132 (1977).

    Article  CAS  Google Scholar 

  118. C.G. Hertz, Serum and urinary concentrations of cyclacillin in humans, Antimicrob. Agents Chem. 4:361 (1973).

    Article  CAS  Google Scholar 

  119. T. Kimura, H. Endo, M. Yoshikawa, S. Muranishi and H. Sezaki, Carrier-mediated transport systems for aminopenicillins in rat small intestine, J. Pharm. Dyn. 1:262 (1978).

    Article  CAS  Google Scholar 

  120. E. Nakashima, A. Tsuji, S. Kagatani and T. Yamana, Intestinal absorption mechanism of amino-beta-lactam antibiotics. III. Kinetics of carrier-mediated transport across the rat small intestine in situ, J. Pharm. Dyn. 7:452 (1984).

    Article  CAS  Google Scholar 

  121. J.P. Clayton, M. Cole, S.W. Elson, K.D. Hardy, L.W. Mizen and R. Sutherland, Preparation, hydrolysis and oral absorption of alpha-carboxy esters of carbenicillin, J. Med. Chem. 18:172 (1985).

    Article  Google Scholar 

  122. S. Hartley and R. Wise, A three way crossover study to compare pharmacokinetics and acceptability of sultamicillin at two dose levels with that of ampicillin, J. Antimicrob. Chem. 10:49 (1982).

    Article  CAS  Google Scholar 

  123. D.J. Tacco, A. deLuna, A.E. Duncan, T.C. Vassil and E.H. Ulm, The physiological disposition and metabolism of enalapril maleate in laboratory animals, Drug Met. Disp. 10:15 (1982).

    Google Scholar 

  124. H.G. Eckert, M.J. Badian, D. Gantz, H.M. Kellner and M. Volz, Pharmacokinetics and biotransformation of Hoe-498 in rat, dog and man, Arzneim. Forschung. 34:1435 (1984).

    CAS  Google Scholar 

  125. D.A. Grant, T.F. Ford and R.J. McCulloch, Distribution of pepstatine and statine following oral and intravenous administration in rats. Tissue localisation by whole body autoradiography, Biochem. Pharm. 31:2302 (1982).

    Article  CAS  Google Scholar 

  126. J.P. Baker, B.H. Kemmenoe, C. McMartin and G.E. Peters, Pharmacokinetics, distribution and elimination of a synthetic octapeptide analogue of somatostatin in the rat, Reg. Peptides. 9:213 (1984).

    Article  CAS  Google Scholar 

  127. J. Bell, G.E. Peters, C. McMartin, N.W. Thomas and C.G. Wilson, Estimation of gut absorption of peptides by biliary sampling, J. Pharm. Pharmacol. 36:88P (1984).

    Google Scholar 

  128. A.J. Wood, G. Maurer, W. Niederberger and T. Beveridge, Cyclosporine: pharmacokinetics metabolism, and drug interactions, Transplant Proc. 15:2409 (1983).

    CAS  Google Scholar 

  129. C.T. Veda, M. Lemaire, G. Gsell and K. Nussbaumer, Intestinal lymphatic absorption of cyclosporin following oral administration in an olive oil solution in rats, Biopharm. Drug Disp. 4:113 (1983).

    Article  Google Scholar 

  130. H. Okada, I. Yamazaki, Y. Ogawa, S. Hirai, H. Okada, T. Yashiki and H. Mima, Vaginal absorption of a potent luteinizing hormone-releasing hormone analog (Leuprolide) in Rats I: Absorption by various routes and absorption enhancement, J. Pharm. Sci. 71:1367 (1982).

    Article  CAS  Google Scholar 

  131. H. Yoshida, K.O. Kumura, R. Hori, T. Anmo and H. Yamaguchi, Absorption of insulin delivered to rabbit trachea using aerosol dosage form, J. Pharm. Sci. 68:670 (1979).

    Article  CAS  Google Scholar 

  132. S. Hirai, T. Yashiki, T. Matsuzawa and H. Mima, Absorption of drugs from the nasal mucosa of rat, Int. J. Pharm. 7:317 (1981).

    Article  CAS  Google Scholar 

  133. C. Bergquist, S.J. Nillius and L. Wide, Intranasal gonadotropin-releasing hormone agonist as a contraceptive agent, Lancet 2:215 (1979).

    Article  CAS  Google Scholar 

  134. M.K. Ward and T.R. Fraser, DDAVP in treatment of vasopressin-sensitive diabetes insipidus, Brit. Med. J. 3:86 (1974).

    Article  CAS  Google Scholar 

  135. S. Hirai, T. Yashiki and H. Mima, Effects of surfactants on the nasal absorption of insulin in rats, Int. J. Pharm. 9:165 (1981).

    Article  CAS  Google Scholar 

  136. G.E. Peters, Distribution and metabolism of exogenous somatostatin in the rat, Reg. Peptides 3:361 (1982).

    Article  CAS  Google Scholar 

  137. D. Brewster, M.J. Humphrey and M.V. Wareing, Metabolism and pharmacokinetics of TRH and an analogue with enhanced neuropharmacological potency, Neuropeptides 1:153 (1981).

    Article  CAS  Google Scholar 

  138. K.S. Pang, W.F. Cherry, J.A. Terrell and E.H. Ulm, Disposition of enalapril and its diacid metabolite enalaprilat in a perfused rat liver preparation. Presence of a diffusional barrier for enalaprilat into hepatocytes, Drug Met. Disp. 12:309 (1984).

    CAS  Google Scholar 

  139. G. Metcalf, P.W. Dettmar, A. Lynn, D. Brewster and M.E. Havler, Thyrotrophin-releasing hormone (TRH) analogues show enhanced CNS selectivity because of increased biological stability, Reg. Peptides, 2:277 (1981).

    Article  CAS  Google Scholar 

  140. S. Sarhan, M. Kolb and N. Seiler, The amolification of the anticonvulsant effect of vinyl GABA (4-aminohexenoic acid) by esters of glycine, Arzneim. Forsch. 34:687 (1984).

    CAS  Google Scholar 

  141. P.S. Callery, L.A. Geelhaar, M.S. Balachandran Nayar, M. Stogniew and K. Gurudarh Rao, Pyrrolines as pro-drugs of gamma-aminobutyric acid analogues, J. Neurochem. 38:1064 (1982).

    Article  Google Scholar 

  142. D. Roemer and J. Pless, Structure activity relationship of orally active enkephalin analogues as analgesics, Life Sci. 24:621 (1979).

    Article  CAS  Google Scholar 

  143. R.M. Freidinger and P.F. Veber, Design of novel cyclic hexapeptide somatostatin analogs from a model of the bioactive conformation, Am. Chem. Soc. (Symp. Series) 251:169 (1984).

    CAS  Google Scholar 

  144. R. Freidinger and D. Veber, Design of novel cyclic hexapeptide somatostatin analogs from a model of the bioactive conformation, Am. Chem. Soc. (Symp. Series) 251:169 (1984).

    CAS  Google Scholar 

  145. R.H. Rippel, E.S. Johnson, W.F. White, M. Fujino, T. Fukuda and S. Kobayashi, Ovulation and gonadotrophin-releasing activity of [D-Leu6,desGlyNH2 10, Pro-ethylamide9]-GNRH(38715), Proc. Soc. Exp. Biol. Med. 148:1193 (1975).

    CAS  Google Scholar 

  146. K. Wiedhaup, The stability of small peptides in the gastrointestinal tract, in: ‘Topics in Pharmaceutical Sciences’, Breimer, D. and Speiser, P., eds., Elsevier/North Holland Biomedical Press, Amsterdam, (1981).

    Google Scholar 

  147. G. Maurer, H.R. Loosli, E. Schreier and B. Keller, Disposition of cyclosporine in several animal species and man. Structural elucidation of its metabolites, Drug Met. Disp. 12:120 (1984).

    CAS  Google Scholar 

  148. H. Kroppe, J.G. Sundelof, R. Hajdu and F.M. Kahan, Metabolism of thienamycin and related carbapenem antibiotics by the renal dipeptidase, dehydropeptidase-I, Antimicrob. Agents Chem. 22:62 (1982).

    Article  Google Scholar 

  149. CD. Klaassen and J.B. Watkins, Mechanism of bile formation hepatic uptake and biliary excretion, Pharmacol. Rev. 36:1 (1984).

    CAS  Google Scholar 

  150. V.J. Hruby, Design of peptide hormone and neurotransmitter analogues, Trends in Pharm. Sci., 6:259 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Ringrose, P.S., Humphrey, M.J. (1986). Peptides as Targets and Carriers. In: Gregoriadis, G., Senior, J., Poste, G. (eds) Targeting of Drugs With Synthetic Systems. NATO ASI Series, vol 113. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5185-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5185-6_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5187-0

  • Online ISBN: 978-1-4684-5185-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics