Advertisement

Tumor-Associated Glycolipid Markers: Possible Targets for Drug and Immuno-Toxin Delivery

  • Sen-itiroh Hakomori
Part of the NATO ASI Series book series (NSSA, volume 113)

Abstract

In order to achieve effective targeting of antibody-drug conjugates to specific types of cells, a comprehensive understanding of the chemical, physical, and dynamic properties of cell surface structures is essential. Glycosphingolipids (briefly, glycolipids), as discussed here, are potentially useful to achieve effective targeting for the following reasons: (i) They are an integral part of the lipid bilayer, and the majority are assumed to be inserted at the outer leaflet of the plasma membrane; (ii) their structure and organization in membranes differ from one type of cell to another and constitute characteristic cell surface specificity of each type of cell? and (iii) they may be more readily internalized than other membrane components, since receptor carbohydrates are directly inserted in membranes.

Keywords

Small Cell Lung Carcinoma Antibody Conjugate Sodium Cyanoborohydride Glycolipid Antigen Monoelonal Antibody 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Hakomori, Glycosphingolipids in cellular interaction, differentiation, and oncogenesis, Ann. Rev. Biochem. 50:733 (1981).CrossRefGoogle Scholar
  2. 2.
    S. Hakomori, Aberrant glycosylation in cancer cell membranes as focused on glycolipids: Overview and perspectives, Cancer Res. 45:2405 (1985).Google Scholar
  3. 3.
    J. Sundsmo and S. Hakomori, Laco-N-neotetraosylceramide (“paraglaoboside”) as a possible tumor-associated surface antigen of hamster NILpy tumor, Biochem. Biophys. Res. Commun. 68:799 (1976).CrossRefGoogle Scholar
  4. 4.
    G. Rosenfelder, W.W. Young, Jr., and S. Hakomori, Association of the glycolipid pattern with antigenic alterations in mouse fibroblasts transformed by murine sarcoma virus, Cancer Res. 37:1333 (1977).Google Scholar
  5. 5.
    S. Hakomori and W.W. Young, Jr., Tumor-associated glycolipid antigens and modified blood group antigens, Scand. J. Immunol. Supplement 6:97 (1978).CrossRefGoogle Scholar
  6. 6.
    J.L. Magnani, B. Nilsson, M. Brockhaus, D. Zopf, Z. Steplewski, H. Koprowski, and V. Ginsburg, A monoclonal antibody-defined antigen associated with gastrointestinal cancer is a ganglioside containing sialylated lacto-N-fucopentaose II, J. Biol. Chem. 257:14365 (1982).Google Scholar
  7. 7.
    K. Fukushima, M. Hirota, P.I. Terasaki, A. Wakisaka, H. Togashi, D. Chia, N. Suyhama, Y. Fukushi, E. Nudelman, and S. Hakomori, Characterization of sialosylated Lewisx as a new tumor-associated antigen, Cancer Res. 44:5279 (1984).Google Scholar
  8. 8.
    Y. Fukushi, E. Nudelman, S.B. Levery, H. Rauvala, and S. Hakomori, Novel fucolipids accumulating in human cancer. III. A hybridoma antibody (FH6) defining a human cancer-assoicated difucoganglioside (VI3NeuAcV3III3Fuc2nLc6), J. Biol. Chem. 259:10511 (1984).Google Scholar
  9. 9.
    Y. Fukushi, S. Hakomori, E. Nudelman, and N. Cochran, Novel fucolipids accumulating in human adenocarcinoma. II. Selective isolation of hybridoma antibodies that differentially recognize mono-, di-, and trifucosylated type 2 chain, J. Biol. Chem. 259:4681 (1984).Google Scholar
  10. 10.
    K. Abe, J.M. McKibbin, and S. Hakomori, The monoclonal antibody directed to difucosylated type 2 chain (Fucα1→2Galβl→4[fucα1→3] GlcNAβl→R; Y determinant), J. Biol. Chem. 258:11793 (1983).Google Scholar
  11. 11.
    A. Brown, T. Feizi, H.C. Gooi, M.J. Emblton, J.K. Picard, and R.W. Baldwin, A monoclonal antibody against human colonic adenoma recognizes difucosylated type 2 blood group chains. Biosci. Rep. 3:163 (1983).CrossRefGoogle Scholar
  12. 12.
    K.O. Lloyd, G. Larson, N. Stromberg, J. Thurin, and K.-A. Karlsson, Mouse monoclonal antibody F-3 recognizes difucosyl type 2 blood group structure, Immunogenetics 17:537 (1983).CrossRefGoogle Scholar
  13. 13.
    Y. Fukushi, S. Hakomori, and T. Shepard, Localization and alteration of mono-, di-, and trifucosyl α1→3 type 2 chain structures during embryogenesis and in human cancer, J. Exp. Med. 159:506 (1984).CrossRefGoogle Scholar
  14. 14.
    Y. Fukushi, R. Kannagi, S. Hakomori, T. Shepard, B.G. Kulander, and J.W. Singer, Localization and distribution of difucoganglioside (VI3NeuAcV3III3Fuc2nLc5) in normal and tumor tissues defined by its monoclonal antibody FH6, Cancer Res. 45:3711 (1985).Google Scholar
  15. 15.
    S. Hakomori, and R. Kannagi, Glycosphingolipids as tumor-associated and differentiation markers, J. Natl. Cancer Inst. 71:231 (1983).Google Scholar
  16. 16.
    E. Nudelman, S. Hakomori, R. Kannagi, S. Levery, M.-Y. Yeh, K.E. Hellström, and I. Hellström, Characterization of a human melanoma-associated ganglioside antigen defined by a monoclonal antibody, 4.2, J. Biol. Chem. 257:12752 (1982).Google Scholar
  17. 17.
    C.S. Pukel, K.O. Lloyd, L.R. Trabassos, W.G. Dippold, H.F. Oettgen, and L.J. Old, GD3, a prominent ganglioside of human melanoma: Detection and characterization by mouse monoclonal antibody, J. Exp. Med. 155:1133 (1982).CrossRefGoogle Scholar
  18. 18.
    L.D. Cahan, R. Irie, R. Singh, A. Cassidenti, and J.C. Paulson, Identification of a human neuroectodermal tumor antigen (OFA-I-2) as ganglioside GD2, Proc. Natl. Acad. Sci. USA 79:7629 (1982).CrossRefGoogle Scholar
  19. 19.
    K. Watanabe, C.S. Pukel, H. Takeyama, K.O. Lloyd, H. Shiku, L.T.C. Li, L.R. Trabassos, H.F. Oettgen, and L.J. Old, Human melanoma antigen AH is an autoantigen ganglioside related to GD2, J. Exp. Med. 156:1884 (1982).CrossRefGoogle Scholar
  20. 20.
    O. Nillson, J.-E. Mansson, T. Brezicka, J. Holmgren, L. Lindholm, S. Sorenson, F. Yngvason, and L. Svennerholm, Fucosyl GM1, a ganglioside associated with small cell lung carcinomas, Glycoconjugate J., 1:43 (1984).CrossRefGoogle Scholar
  21. 21.
    E.G. Bremer, S.B. Levery, S. Sonnino, R. Ghidoni, S. Canevari, R. Kannagi, and S. Hakomori, Characterization of a glycosphingolipid antigen defined by the monoclonal antibody MBr1 expressed in normal and neoplastic epithelial cells of human mammary gland, J. Biol. Chem. 259:14773 (1984).Google Scholar
  22. 22.
    D.L. Urdal, and S. Hakomori, Tumor-associated ganglio-N-triosylceramide: Target for antibody dependent, avidin-mediated drug killing of tumor cells, J. Biol. Chem. 255:10509 (1980).Google Scholar
  23. 23.
    S. Hakomori, W.W. Young, Jr., and D. Urdal, Glycolipid tumor cell markers and their monoclonal antibodies: Drug targeting and immunosuppression, in: “Monoclonal Antibodies in Drug Development”, T. August, ed., Johns Hopkins University Press, Baltimore (1982).Google Scholar
  24. 24.
    G. Weissman, D. Bloomgarden, R. Kaplan, C. Cohen, S. Hoffstein, T. Collins, A. Gotlieb, and D. Nagle, A general method for the introduction of enzymes, by means of immunoglobulin-coated liposomes, into lysosomes of deficient cells, Proc. Natl. Acad. Sci. USA 72:88 (1975).CrossRefGoogle Scholar
  25. 25.
    C.M. Cohen, G. Weissmann, S. Hoffstein, Y.C., Awasthi, and S.K. Srivastava, Introduction of purified hexosaminidase A into Tay-Sachs leukocytes by means of immunoglobulin-coated liposomes, Biochemistry 15:452 (1976).CrossRefGoogle Scholar
  26. 26.
    G. Gregoriadis, and E.D. Neerunjun, Homing of liposomes to target cells, Biochem. Biophys. Res. Commun. 65:537 (1975).CrossRefGoogle Scholar
  27. 27.
    G. Gregoriadis, E.D. Neerunjun, and R. Hunt, Fate of liposome-associated agent injected into normal and tumor-bearing rodents: Attempts to improve localization in tumor tissues, Life Sci. 21:374 (1977).CrossRefGoogle Scholar
  28. 28.
    L. Huang, and S.J. Kennel, Binding of immunoglobulin G to phospholipid vesicles by sonication, Biochemistry 18:1702 (1979).CrossRefGoogle Scholar
  29. 29.
    D. Sinha, and P. Karush, Attachment to membranes of exogenous immunoglobulin conjugated to a hydrophobic anchor, Biochem. Biophys. Res. Commun. 90:554 (1979).CrossRefGoogle Scholar
  30. 30.
    T.D. Heath, R.T. Farley, and D. Papahadjopoulous, Antibody targeting of liposomes: Cell specificity obtained by conjugation of F(ab’)2 to vesicle surface, Science 210:539 (1980).CrossRefGoogle Scholar
  31. 31.
    W.W. Young, Jr., and S. Hakomori, Therapy of mouse lymphoma with monoclonal antibodies to glycolipid: Selection of low antigenic variants in-vivo, Science 211:487 (1981).CrossRefGoogle Scholar
  32. 32.
    J. Brown, R.G. Woodbury, C.E. Hart, I. Hellstrom, and K. Hellstrom, Quantitative analysis of melanoma-assoicated antigen p97 in normal and neoplastic tissues, Proc. Natl. Acad. Sci. USA 78:539 (1981).CrossRefGoogle Scholar
  33. 33.
    A.C. Morgan, D.R. Galloway, and R.A. Reisfeld, Production and characterization of monoclonal antibody to melanoma-specific glycoproteins, Hybridoma 1:27 (1981).CrossRefGoogle Scholar
  34. 34.
    J. Wiels, S. Junqua, P. Dujardin, J.-B. LePecq, and T. Tursz, Properties of immunotoxins against a glycolipid antigen associated with Burkitt’s lymphoma, Cancer Res. 44:129 (1984).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Sen-itiroh Hakomori
    • 1
  1. 1.Program of Biochemical Oncology and Membrane Research Fred Hutchinson Cancer Research Center, Departments of Pathobiology, Microbiology, and ImmunologyUniversity of WashingtonSeattleUSA

Personalised recommendations