Particle Size Analysis of Colloidal Systems by Photon Correlation Spectroscopy

  • S. J. Douglas
  • S. S. Davis
Part of the NATO ASI Series book series (NSSA, volume 113)


Photon correlation spectroscopy (PCS), also known as quasielastic light scattering, offers many advantages over more classical techniques; such as electron microscopy, for the particle size analysis of colloidal systems. Particularly advantageous are the rapid analysis time (approximately 1 minute), minimal sample preparation, wide applicable size range (5–3000nm) and no prior requisite knowledge of sample concentraion.1 In addition, PCS has many biological and medical applications2 and may be used to study various colloidal properties such as the nature of particle surfaces,3 kinetics of colloid formation4 and antigen-antibody induced particle aggregation.5


Photon Correlation Spectroscopy Polydispersity Index Stirrer Speed Photon Correlation Spectroscopy Particle Surface Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.L. McConnell, Particle size determination by quasielastic light scattering, Anal. Chem., 53:1007A (1981).Google Scholar
  2. 2.
    G.B. Benedek, Biological and medical applications of light scattering spectroscopy, in: “Photon Correlation Spectroscopy and Velocimetry”, H.Z. Cummins and E.R. Pike, eds., Plenum, New York (1977).Google Scholar
  3. 3.
    J.W.S. Goossens and A. Zembrod, Characterization of the surface of polymer latexes by photon correlation spectroscopy, Colloid Polym. Sci., 257:437 (1979).CrossRefGoogle Scholar
  4. 4.
    A.R. Goodall, K.J. Randle and M.C. Wilkinson, A study of the emulsifier-free polymerisation of styrene by laser light scattering techniques, J. Colloid Interface Sci., 75:493 (1980).CrossRefGoogle Scholar
  5. 5.
    G.K. Von Schulthess, R.J. Cohen, N. Sakato and G.B. Benedek, Laser light scattering spectroscopic immunoassay for mouse IgA, Immunochem., 13:955 (1976).CrossRefGoogle Scholar
  6. 6.
    H.Z. Cummins and E.R. Pike, (Eds.), “Photon correlation and Light Beating Spectroscopy”, Plenum, New York, (1974).Google Scholar
  7. 7.
    H.Z. Cummins and E.R. Pike, (Eds.), “Photon Correlation Spectroscopy and Velocimetry”, Plenum, New York, (1977).Google Scholar
  8. 8.
    B. Chu, “Laser Light Scattering”, Academic Press, New York, (1974).Google Scholar
  9. 9.
    B.J. Berne, and R. Pecora, “Dynamic Light Scattering”, John Wiley and Sons, New York, (1976).Google Scholar
  10. 10.
    P.N. Pusey, D.E. Koppel, D.W. Schaeffer, R.D. Camerini-Otero, and S.H. Koenig, Intensity fluctuation spectroscopy of laser light scattered by solutions of spherical viruses, R17, Qβ, BSV, PM2 and T7. I. Light-scattering technique, Biochemistry, 13:952 (1974).CrossRefGoogle Scholar
  11. 11.
    D.E. Koppell, Analysis of macromolecular polydispersity in intensity correlation spectroscopy. Method of cummulants, J. Chem. Phys., (1972).Google Scholar
  12. 12.
    J.C. Brown, P.N. Pusey and R. Dietz, Photon correlation study of poly-disperse samples of polystyrene in cyclohexane, J. Chem. Phys., 62:1136 (1975).CrossRefGoogle Scholar
  13. 13.
    D.J. Green, D.B. Sattelle, D.W. Westhead, and K.H. Langley, Relative size and dispersity of isolated chromassin granules, in; “Photon Correlation Spectroscopy and Velocimetry”, H.Z. Cummins and E.R. Pike, eds., Plenum, New York, (1977).Google Scholar
  14. 14.
    B. Chu, E. Gulari, and E. Gulari, Photon correlation measurements of colloidal size distributions II. Details of a histogram approach and comparison of methods of data analysis, Phys. Ser., 19:476 (1979).CrossRefGoogle Scholar
  15. 15.
    A.N. Lavery and J.C. Earnshaw, Photon correlation spectroscopy of particle polydispersity: a cubic B-spline analysis, J. Chem. Phys., 80:5438 (1984).CrossRefGoogle Scholar
  16. 16.
    A.J. Pearce, A kinetic study of emulstion coalescence, Ph.D. Thesis, University of Nottingham (1984).Google Scholar
  17. 17.
    S.J. Douglas, L. Ilium, S.S. Davis and J. Kreuter, Particle size and size distribution of poly(butyl 2-cyano-acrylate) nanopartides. I. Influence of physicochemical factors, J. Colloid Interface Sci., 101:149 (1984).CrossRefGoogle Scholar
  18. 18.
    E.J. Derderian and T.B. MacRury, Quasielastic light scattering on standard polystyrene lactices, J. Dispersion Sci. Tech., 2:345 (1981).CrossRefGoogle Scholar
  19. 19.
    A.A. Al-Saden, A.T. Florence, T.L. Whateley, F. Puisieux and C. Vaution, Characterization of mixed nonionic surfactant micelles by photon correlation spectroscopy and viscosity, J. Colloid Interface Sci., 86:51 (1982).CrossRefGoogle Scholar
  20. 20.
    P.N. Pusey and W. van Megan, Detection of small polydispersities by photon correlation spectroscopy, J. Chem. Phys., 80:3513 (1984).CrossRefGoogle Scholar
  21. 21.
    S.J. Douglas, L. Ilium and S.S. Davis, Particle size and size distribution of poly (butyl 2-cyanoacrylate) nanoparticles. II. Influence of stabilizers, J. Colloid Interface Sci., 103:154 (1985).CrossRefGoogle Scholar
  22. 22.
    M. El-Samaligy and P. Rohdewald, Triamcinolone diacetate nanoparticles, a sustained release drug delivery system suitable for parenteral administration, Pharm. Acta. Helv., 57:201 (1982).Google Scholar
  23. 23.
    S.J. Douglas, L. Ilium and S.S. Davis, Poly (butyl 2-cyanoacrylate) nanoparticles with differing surface charges, J. Controlled Release, in press, (1986).Google Scholar
  24. 24.
    F. Gubensek and S. Laparije, Potentiometrie titration studies of diethylaminoethyl dextran, J. Macromol. Sci. Chem., A2:1045 (1968).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • S. J. Douglas
    • 1
  • S. S. Davis
    • 1
  1. 1.Department of PharmacyUniversity of NottinghamNottinghamUK

Personalised recommendations