Advertisement

Particle Charge and Surface Hydrophobicity of Colloidal Drug Carriers

  • R. H. Muller
  • S. S. Davis
  • L. Illum
  • E. Mak
Part of the NATO ASI Series book series (NSSA, volume 113)

Abstract

The fate of colloidal particles in the body is determined by different factors such as particle size and shape,1–8 particle charge9–22 and surface hydrophobicity.23–32 Among them, surface hydrophobicity seems to play an important role in particle phagocytosis. Particles with different surface charges will show, after incubation with serum, a similar negative charge9,33,34 of about -11 mV to -18 mV (calculated as the Zeta potential). This is due to the adsorption of serum components which shield the original charge and create a new one. Therefore, for subsequent interactions with macrophages, i.e. clearance by the reticuloendothelial system (RES), the colloidal particles may have similar surface charges but not similar surface hydrophobicity. The repulsive forces between negatively charged macro-phages and the negatively charged particles will thus be normally the same, but due to different van der Waals (hydrophobic) interactions the attractive forces will be of different magnitudes. The size of these attractive forces is proportional to the hydrophobicity of the particle surface layer of blood components (opsonisation).

Keywords

Zeta Potential Structure Function Surface Hydrophobicity Latex Particle Doppler Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.B. Zilversmit, G.A. Boyd and M. Brucer, The effect of particle size on blood clearance and tissue distribution of radioactive gold colloids, J. Lab. Clin. Med., 40:255 (1952).Google Scholar
  2. 2.
    R.L. Juliano and D. Stamp, Biochem. Biophys. Res. Commun., The effect of particle size and charge on the clearance rates of liposomes and liposome-encapsulated drugs, 63:651 (1975).Google Scholar
  3. 3.
    H.G. Schroeder, G.H. Simmons and P.P. De Luca, Distribution of sub-visible microspheres after intravenous administration to Beagle dogs, J. Pharm. Sci., 67:504 (1978).Google Scholar
  4. 4.
    M. Kanke, G.H. Simmons, D.L. Weiss, B.A. Bivans and P.P. De Luca, Clearance of 141ce-labelled microspheres from blood and distribution in specific organs following intravenous and intraarterial administration in Beagle dogs, J. Pharm. Sci., 69:775 (1980).Google Scholar
  5. 5.
    M. Frier, in: “Progress in Radiopharmacology”, P.H. Cox ed., Vol. 2, Elsevier/North Holland Biomedical Press, Amsterdam (1981).Google Scholar
  6. 6.
    L. Ilium, S.S. Davis, C.G. Wilson, M. Frier, J.G. Hardy and N.W. Thomas, Blood clearance and organ deposition of intravenously administered colloidal particles: effects of particle size, nature and shape, Int. J. Pharmaceut., 12:135 (1982).Google Scholar
  7. 7.
    L. Ilium and S.S. Davis, The targeting of drugs parenterally using microspheres, J. Parent. Sci. Tech., 36:242 (1982).Google Scholar
  8. 8.
    E. Tomlinson and J.G. McVie, New directions in cancer chemotherapy. 2. Targeting with microspheres, Pharm. Int., 4:281 (1983).Google Scholar
  9. 9.
    D.J. Wilkins and P.A. Myers, Studies on the relationship between the electrophoretic properties of colloids and their blood clearance and organ distribution in the rat, Brit. J. Exp. Path., 47:568 (1966).Google Scholar
  10. 10.
    D.J. Wilkins and P.A. Myers, Anomalous electrophoretic behaviour of certain adsorbed protein derivatives, Proc. Soc. Exp. Biol. Med., 133:255 (1970).Google Scholar
  11. 11.
    D.J. Wilkins and P.A. Myers, in: “Surface chemistry of biological systems”, M. Blank, ed., Plenum Press, New York (1970).Google Scholar
  12. 12.
    T.P. Stossel, R.J. Mason, J. Hartwig and M. Vaughan, Quantitative studies of phagocytosis by polymorphonuclear leukocytes: use of emulsions to measure the initial rate of phagocytosis, J. Clin. Invest., 51:615 (1972).Google Scholar
  13. 13.
    T.P. Stossel, Quantitative studies of phagocytosis: Kinetic effects of cations and heat-labile opsonin, J. Cell. Biol., 58:346 (1973).Google Scholar
  14. 14.
    W.E. Magee, C.W. Gott, J. Schoknecht, M.D. Smith and K. Cherian, Interaction of cationic liposomes containing entrapped horseradish-peroxidase with cells in culture, J. Cell. Biol., 63:492 (1974).Google Scholar
  15. 15.
    V.K. Jansons, P. Weiss, T. Chen and W.R. Redwood, In-vitro interaction of L1210 cells with phospholipid vesicles, Cancer Res., 38:531 (1978).Google Scholar
  16. 16.
    S.S. Davis, Colloids as drug delivery systems, Pharmaceutical Technology, 71: (1981).Google Scholar
  17. 17.
    G. Capo, F. Garrouste, A.M. Benoliel, P. Bongrand and R. Depieds, Non-specific binding by macrophages: Evaluation of the influence of medium-range electrostatic repulsion and short-range hydrophobic interaction, Immunol. Commun., 10:35 (1981).Google Scholar
  18. 18.
    C. Capo, P. Bongrand, A.M. Benoliel, A. Tyter and R. Depieds, Particle macrophage interaction: Role of surface charges, Annales D’Immunologie D132, No. 2–3:165 (1981).Google Scholar
  19. 19.
    A. Raz, C. Bucana, W.E. Fogler, G. Poste and I.J. Fidler, Biochemical, morphological and ultrastructural studies on the uptake of liposomes by murine macrophages, Cancer Res., 41:487 (1981).Google Scholar
  20. 20.
    M.J. Hsu and R.L. Juliano, Interaction of liposomes with the reticuloendothelial system. II. Non-specific and receptor-mediated uptake of liposomes by mouse peritoneal macrophages, Biochim. Biophys. Acta, 720:411 (1982).Google Scholar
  21. 21.
    R.C. Roozemond and D.C. Urli, Peculiar behaviour of rabbit thymocytes in interaction with liposomes of different compositions shown by fluorescence polarisation studies, lipid analysis, and uptake of vesicle-entrapped carboxyfluorescein, Biochim. Biophys. Acta, 689: 499 (1982).Google Scholar
  22. 22.
    R.A. Schwendener, P.A. Lagocki and Y.E. Rahman, The effect of charge and size on the interaction of unilamellar liposomes with macrophages, Biochim. Biophys. Acta, 772:93 (1984).Google Scholar
  23. 23.
    C.J. Van Oss and M.W. Stinson, Immunoglobulins as specific opsonins. I. The influence of polyclonal and monoclonal immunoglobulins on the in-vitro phagocytosis of latex particles and staphylococci by human neutrophils, J. Reticuloendoth. Soc., 8:397 (1970).Google Scholar
  24. 24.
    C.J. Van Oss and C.F. Gillman, Phagocytosis as a surface phenomenon. II. Contact angles and phagocytosis of encapsulated bacteria before and after opsonisation by specific antiserum and complement, J. Reticuloendoth. Soc., 12:497 (1972).Google Scholar
  25. 25.
    C.J. Van Oss and C.F. Gillman, Phagocytosis as a surface phenomenon. III. Influence of Cl423 on the contact angle and on the phagocytosis of sensitised encapsulated bacteria, Immunol. Commun., 2:415 (1973).Google Scholar
  26. 26.
    C.J. Van Oss, C.F. Gillman and A.W. Neumann, in: “Phagocytic Engulfment and Cell Adhesiveness”, Marcel Dekker, New York (1975).Google Scholar
  27. 27.
    C.J. Van Oss and C.F. Gillman, Phagocytosis and immunity, Int. Convoc Immunol., 4:505 (1975).Google Scholar
  28. 28.
    I. Stjernestrom, K.-E. Magnussen, O. Stendahl and C. Tagesson, Hydrophobic and charge interaction of smooth Salmonella typhimurium 395-MS sensitized with anti-MS immunoglobulin G and complement, Infect. Immun., 18:261 (1977).Google Scholar
  29. 29.
    C.J. Van Oss, Phagocytosis as a surface phenomenon, Ann. Rev. Microbiol., 32:19 (1978).Google Scholar
  30. 30.
    K-E. Magnusson, O. Stendahl, I. Stjernestrom and L. Edebo, Reduction of phagocytosis, surface hydrophobicity and charge of Salmonella typhimurium 395 MR 10 by reaction with secretory IgA (SIgA), Immunology, 36:439 (1979).Google Scholar
  31. 31.
    T.A. Horbett and P.K. Weathersby, Adsorption of proteins from plasma to a series of hydrophilic-hydrophobic copolymers. I. Analysis with the in-situ radioiodination technique, J. Biomedical Materials Res., 15:403 (1981).Google Scholar
  32. 32.
    T.A. Horbett, Adsorption of proteins from plasma to a series of hydrophilic-hydrophobic copolymers. II. Compositional analysis with the prelabelled protein technique, J. Biomedical Materials Res., 15:673 (1981).Google Scholar
  33. 33.
    D.J. Wilkins, The biological recognition of foreign from native particles as a problem in surface chemistry, J. Coll. Interf. Sci., 25:84 (1967).Google Scholar
  34. 34.
    C.J. Van Oss and C.F. Gillman, Phagocytosis as a surface phenomenon. I. Contact angles and phagocytosis of non-opsonised bacteria, J. Reticuloendoth. Soc., 12:283 (1972).Google Scholar
  35. 35.
    D.R. Absolam, C.J. Van Oss, W. Zingg and A.W. Neumann, Phagocytosis as a surface phenomenon: Opsonisation by aspecific adsorption of IgG as a function of bacterial hydrophobicity, J. Reticuloendoth. Soc., 31:59 (1982).Google Scholar
  36. 36.
    L. Ilium and S.S. Davis, The organ uptake of intravenously administ-Google Scholar
  37. ered colloidal particles can be altered using non-ionic surfactant (Poloxamer 388), FEBS Lett., 167:79 (1984).Google Scholar
  38. 37.
    O. Stern, Zur Theorie der elektrischen Doppelschicht, Z. Elektrochemie., 30:508 (1924).Google Scholar
  39. 38.
    J.Th.G. Overbeek and L. Lyklema, Electric potentials in colloidal systems, in: “Electrophoresis,” Vol. I., Bier, M. ed., Academic Press, New York (1959).Google Scholar
  40. 39.
    M.T. Riddick, “Control of colloid stability through zeta potential,” Vol. 1, Livingstone Publ. Co., Wynnewood (1968).Google Scholar
  41. 40.
    H. Sontag and K. Strenge, “Koagulation und Stabilitat disperser Systeme,” VEB Deutscher Verlag der Wissenschaften, Berlin (1970).Google Scholar
  42. 41.
    P. Ney, “Zetapotentiale und Flotierbarkeit von Mineralien,” Springer Wien-New York (1973).Google Scholar
  43. 42.
    H. Van Olphen, “An introduction to colloid and surface chemistry,” John Wiley and Sons, New York (1977).Google Scholar
  44. 43.
    A.M. James, Electrophoresis of particles in suspensions, in: “Surface and Colloid Science,” Vol. 11, R.J. Good and R.R. Stromberg, eds., Plenum Press, New York (1979).Google Scholar
  45. 44.
    R.J. Hunter, “Zeta Potential in Colloid Science: principles and applications,” Academic Press, London (1981).Google Scholar
  46. 45.
    G. Lagaly, Energetische Wechselwirkungen in Dispersionen und Emulsionen,” H. Asche, D. Essig and P.C. Schmidt, eds., Wissenschaftliche Verlagsgesellschaft, Stuttgart (1984).Google Scholar
  47. 46.
    A. Tiselius, A new apparatus for electrophoretic analysis of colloidal mixtures, Trans. Faraday Soc., 33:524 (1937).Google Scholar
  48. 47.
    J.C. Earnshaw and M.W. Steer, eds., “The application of laser light scattering to the study of biological motion,” Plenum Press, New York (1983).Google Scholar
  49. 48.
    B.R. Ware and W.H. Flygare, The simultaneous measurement of the electrophoretic mobility and diffusion coefficient in bovine serum albumin solutions by light scattering, Chem. Phys. Lett., 12:81 (1971).Google Scholar
  50. 49.
    B.R. Ware and W.H. Flygare, Light scattering in mixtures of BSA, BSA dimers and fibrinogen under the influence of electric fields, J. Colloid Interface Sci., 39:670 (1972).Google Scholar
  51. 50.
    B.R. Ware, Electrophoretic light scattering, Advan. Colloid. Interface Sci., 4:1 (1974).Google Scholar
  52. 51.
    E.E. Uzgiris, Electrophoresis of particles and biological cells measured by the Doppler shift of scattered laser light, Opt. Commun., 6:55 (1972).Google Scholar
  53. 52.
    A.J. Bennet and E.E. Uzgiris, Laser doppler spectroscopy in an oscillating electric field, Phys. Rev., A8:2662 (1973).Google Scholar
  54. 53.
    E.E. Uzgiris, Laser doppler spectrometer for study of electrokinetic phenomena, Rev, Sci. Instrum., 45:74 (1974).Google Scholar
  55. 54.
    E.E. Uzgiris and J.H. Kaplan, Laser doppler spectroscopic studies of the electrokinetic properties of human blood cells in dilute salt solution, J. Colloid Interface Sci., 55:148 (1976).Google Scholar
  56. 55.
    E.E. Uzgiris and D.C. Golibersuch, Excess scattered light intensity fluctuation from hemoglobin, Phys. Rev. Lett., 32:37 (1974).Google Scholar
  57. 56.
    D.D. Haas and B.R. Ware, Design and construction of a new electrophoretic light scattering chamber and applications to solutions of hemoglobin, Anal. Biochem., 74:175 (1976).Google Scholar
  58. 57.
    H.Z. Cummins and E.R. Pike, eds., “Photon Correlation and Light Beating Spectroscopy,” Plenum Press, New York (1973).Google Scholar
  59. 58.
    H.S. Cummins and E.R. Pike, eds., “Photon Correlations Spectroscopy and Velocimetry,” Plenum, New York (1977).Google Scholar
  60. 59.
    T.S. Durrani and C.A. Greated, “Laser Systems in Flow Measurement,” Plenum, New York (1977).Google Scholar
  61. 60.
    B. Eliasson and R. Dandliker, A theoretical analysis of laser doppler flowmeters, Optica Acta, 21:119 (1974).Google Scholar
  62. 61.
    K. Schatzel, Advances in cross-beam rate correlation, Optica Acta, 27:45 (1980).Google Scholar
  63. 62.
    Malvern Application Report MAR301, Malvern Instruments, Malvern (GB) (1984).Google Scholar
  64. 63.
    K. Schatzel and J. Merz, Measurement of small electrophoretic mobilities by light scattering and analysis of the amplitude weighted phase structure function, J. Chem. Phys., 81:2482 (1984).Google Scholar
  65. 64.
    R.H. Muller and J. Merz, Moderne Messmethoden zur Bestimmung der Teilchenladung II, Pharmazeutische Verfahrenstechnik, 1:141 (1985).Google Scholar
  66. 65.
    B.W. Muller, J. Merz and R.H. Muller, Simultane Bestimmung von elektrophoretischer Beweglichkeit und Teilchengrosse bei uberlagerter Konvektion an Suspensionen und Emulsionen, Colloid Polymer Sci., 263:342 (1985).Google Scholar
  67. 66.
    J. Merz, Simultane Messung von Diffusionskonstante und elektrophoretischer Beweglichkeit hochdisperser Systeme mit Hilfe der amplituden-gewichtetan Phasenstrukturfunktion, Ph.D. Thesis, Department of Pharmacy, University of Kiel (FRG) (1985).Google Scholar
  68. 67.
    L. Brand, J.R. Gohlke and D.S. Rao, Evidence for binding of Rose Bengal and Anilinonaphthalene-sulphonates at the active regions of liver alcohol dehydrogenase, Biochemistry, 6:3510 (1967).Google Scholar
  69. 68.
    K.K. Rohatgi and A.K. Mukhopadhyay, Isolation of unique dimer spectra of dyes from the composite spectra of aggregated solutions, Photochem. Photobiol., 14:551 (1971).Google Scholar
  70. 69.
    I.M. Issa, R.M. Issa and M.M. Ghoneim, Spectrophotometric studies on fluorescein derivatives in aqueous solutions, Z. Physik. Chem., (Leipzig), 250:161 (1972).Google Scholar
  71. 70.
    C-W. Wu and F.Y-H. Wu, Rose Bengal: a spectroscopic probe for ribonucleic acid polymerase, Biochemistry, 12:4349 (1973).Google Scholar
  72. 71.
    F. Y-H. Wu and C-W. Wu, Rose Bengal: inhibitor of ribonucleic acid chain elongation, Biochemistry, 12:4343 (1973).Google Scholar
  73. 72.
    J.J.M. Lamberts and D.C. Neckers, Rose Bengal and non-polar derivatives, J. Am. Chem. Soc., 105:7465 (1983).Google Scholar
  74. 73.
    B. Kronberg, L. Kall and P. Stenius, Adsorption of non-ionic surfactants on latexes, J. Dispersion Sci. and Techn., 2:215 (1981).Google Scholar
  75. 74.
    B. Kronberg, Thermodynamics of adsorption of non-ionic surfactants on latexes, J. Colloid Interf. Sci., 96:55 (1983).Google Scholar
  76. 75.
    B. Kronberg and P. Stenius, The effect of surface polarity on the adsorption of non-ionic surfactants. I. Thermodynamic considerations, J. Colloid Interf. Sci., 102:410 (1984).Google Scholar
  77. 76.
    B. Kronberg, P. Stenius and G. Igeborn, The effect of surface polarity on the adsorption of non-ionic surfactants. II. Adsorption to poly-(methyl-methacrylate) latex, J. Colloid Interf. Sci., 102:418 (1984).Google Scholar
  78. 77.
    G. Scatchard, The attractions of proteins for small molecules and ions, Ann. N.Y. Acad. Sci., 51:660 (1949).Google Scholar
  79. 78.
    G. Derzelic, N. Derzelic and Z. Telisman, The binding of human serum albumin by monodisperse polystyrene latex particles, Eur. J. Biochem., 23:575 (1971).Google Scholar
  80. 79.
    P-A. Albertson, “Partition of Cell Particles and Macromolecules,” John Wiley and Sons, New York (1971).Google Scholar
  81. 80.
    H. Walter and F.W. Selby, Effects of DEAE-dextran on the partition of red blood cells in aqueous dextran-polyethylene glycol two-phase systems, Biochim. Biophys. Acta, 148:517 (1967).Google Scholar
  82. 81.
    H. Walter, R. Garza and R.P. Coyle, Partition of DEAE-dextran in aqueous dextran-polyethylene glycol phases and its effect on the partition of cells in such systems, Biochim. Biophys. Acta, 156: 409 (1968).Google Scholar
  83. 82.
    V.P. Shanbag and C-G. Axelsson, Hydrophobic interaction determined by partition in aqueous two-phase systems. Partition of proteins in systems containing fatty acid esters of poly(ethylene glycol), Eur. J. Biochem., 60:17 (1975).Google Scholar
  84. 83.
    E. Eriksson, P-A. Albertsson and G. Johansson, Hydrophobic surface properties of erythrocytes studied by affinity partition in aqueous two-phase systems, Mol. and Cell. Biochem., 10:123 (1976).Google Scholar
  85. 84.
    H. Walter and J. Krob, Hydrophobic affinity partition in aqueous two-phase systems containing poly(ethylene glycol)-palmitate of right-side-out and inside-out vesicles from human erythrocyte membranes, FEBS Lett., 61:290 (1976).Google Scholar
  86. 85.
    K-E. Magnusson and G. Johansson, Probing the surface of Salmonella typhimurium SR and R bacteria by aqueous biphasic partitioning in systems containing hydrophobic and charged polymers, FEMS Lett., 2:225 (1977).Google Scholar
  87. 86.
    K-E. Magnusson, O. Stendahl, C. Tagesson, L. Edebo and G. Johansson, The tendency of smooth and rough Salmonella typhimurium bacteria and lipopolysaccharide to hydrophobic and ionic interaction, as studied in aqueous polymer two-phase systems, Acta Path. Microbiol. Scand., Sect. B 85:212 (1977).Google Scholar
  88. 87.
    P-A. Albertsson, Partition between polymer phases, J. Chromatogr., 159:111 (1978).Google Scholar
  89. 88.
    E. Eriksson and P-A. Albertsson, The effect of the lipid composition on the partition of liposomes in aqueous two-phase systems, Biochim. Biophys. Acta, 507:425 (1978).Google Scholar
  90. 89.
    H. Miorner, E. Myhre, L. Bjorck and G. Kronvall, Effect of specific binding of human albumin, fibrinogen and immunoglobulin G on surface characteristics of bacterial strains as revealed by partition experiments in polymer phase systems, Infect. Immun., 29:879 (1980).Google Scholar
  91. 90.
    H. Miorner, P-A. Albertsson and G. Kronvall, Isoelectric points and surface hydrophobicity of gram-positive cocci as determined by cross-partition and hydrophobic affinity partition in aqueous two-phase systems, Infect. Immun., 36:227 (1982).Google Scholar
  92. 91.
    P.T. Sharpe and G.S. Warren, The incorporation of glycolipids with defined carbohydrate sequence into liposomes and the effects on partition in aqueous two-phase systems, Biochim. Biophys. Acta, 772:176 (1984).Google Scholar
  93. 92.
    R. Reitherman, S.D. Flanagan and S.H. Barondes, Electromotive phenomena in partition of erythrocytes in aqueous polymer two phase systems, Biochim. Biophys. Acta, 297:193 (1973).Google Scholar
  94. 93.
    P-A. Albertsson, Particle fractionation in liquid two-phase systems: The composition of some phase systems and the behaviour of some model particles in them. Application to the isolation of cell walls from microorganisms, Biochim. Biophys. Acta, 27:378 (1958).Google Scholar
  95. 94.
    S. Hjerten, J. Rosengren and S. Pahlman, Hydrophobic interaction chromatography: The synthesis and the use of some alkyl and aryl derivatives of agarose, J. Chromatogr., 101:281 (1974).Google Scholar
  96. 95.
    G. Halperin and S. Shaltiel, Homologous series of alkyl agarose discriminate between erythrocytes from different species, Biochem. Biophys. Res. Commun., 72:1497 (1976).Google Scholar
  97. 96.
    S. Hjerten, Hydrophobic interaction chromatography of proteins on neutral adsorbents, in: “Methods of Protein Separation” N. Calsimpoolas, ed., Vol. 2, Plenum, New York (1976).Google Scholar
  98. 97.
    B.H.J. Hofstee and N.F. Otillio, Non-ionic adsorption chromatography of proteins on neutral adsorbents, J. Chromatogr., 159:57 (1978).Google Scholar
  99. 98.
    C.J. Smyth, P. Jonsson, E. Olsson, O. Soderlind, J. Rosengren, S. Hjerten and T. Wadstrom, Differences in hydrophobic surface characteristics of porcine enteropathogenic Escherichia coli with or without K88 antigen as revealed by hydrophobic interaction chromatography, Infect. Immun., 22:462 (1978).Google Scholar
  100. 99.
    S. Tylewska, S. Hjerten and T. Wadstrom, Contribution of M protein to the hydrophobic surface properties of Streptococcus pyogenes, FEMS Lett., 6:249 (1979).Google Scholar
  101. 100.
    A. Paris, T. Wadstrom and J.H. Freer, Hydrophobic adsorptive and hemagglutinating properties of Escherichia coli possessing colonisation factor antigens (CFA-I or CFA-II), Type I pili or other pili, Curr. Microbiol., 5:67 (1981).Google Scholar
  102. 101.
    S. Shaltiel, Hydrophobic chromatography, Methods Enzymol., 34:126 (1974).Google Scholar
  103. 102.
    J. Rosengren, S. Pahlman, M. Glad and S. Hjerten, Hydrophobic interaction chromatography on non-charged sepharose derivative: Binding of a model protein, related to ionic strength, hydrophobicity of the substituent, and degree of substitution, Biochim. Biophys. Acta, 412:51 (1975).Google Scholar
  104. 103.
    J-I. Ochoa, Hydrophobic (interaction) chromatography, Biochimie, 60:1 (1978).Google Scholar
  105. 104.
    T. Malmqvist, Bacterial hydrophobicity measured as partition of palmitic acid between the two immiscible phases of cell surface and buffer, Acta Path. Microbiol. Scand., Sect. B 91:69 (1983).Google Scholar
  106. 105.
    S. Kjelleberg, C. Lagercrantz and Th. Larsson, Quantitative analysis of bacterial hydrophobicity studied by the binding of dodecanoic acid, FEMS Lett., 7:41 (1980).Google Scholar
  107. 106.
    D.A. Rawlins and J.B. Kayes, Pharmaceutical suspension studies. I. A comparison of adsorption of polyvinylalcohol at the diloxanide furoate BP and polystyrene latex water interface, Int. J. Pharm., 13:145 (1983).Google Scholar
  108. 107.
    J. Kreuter, Physicochemical characterisation of polyacrylic nano-particles, Int. J. Pharm., 14:43 (1983).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • R. H. Muller
    • 1
  • S. S. Davis
    • 1
  • L. Illum
    • 2
  • E. Mak
    • 1
  1. 1.Pharmacy DepartmentUniversity of NottinghamNottinghamUK
  2. 2.Pharmaceutics DepartmentRoyal Danish School PharmacyDenmark

Personalised recommendations