Advertisement

Liposomes as Drug Carriers to Liver Macrophages: Fundamental and Therapeutic Aspects

  • Frits Roerdink
  • Joke Regts
  • Toos Daemen
  • Irma Bakker-Woudenberg
  • Gerrit Scherphof
Part of the NATO ASI Series book series (NSSA, volume 113)

Abstract

It is well established that after intravenous injection large-size liposomes are rapidly cleared from the blood and taken up by cells belonging to the reticulo-endothelial system (RES). Particularly, fixed macrophages in liver (Kupffer cells) and spleen are actively involved in the uptake of the vesicles.1–5 Uptake occurs by way of endocytosis followed by intralysosomal degradation of liposomal lipids and release of entrapped substances.5 The natural affinity of liposomes for macrophages has been exploited in the application of liposomes as a drug delivery system to this cell type. For example, liposomes have been used as carriers of antimicrobial agents in the treatment of intracellular infections such as experiental leishmaniasis,6 candidiasis7,8 or listeriosis.9 In these infections the microorganisms are lodged in the lysosomes of tissue macrophages, precisely the site where the liposomes end up after intravenous injection. Thus, encapsulation of relevant antibiotic drugs within liposomes results in an increased therapeutic index of these drugs when administered intravenously.

Keywords

Kupffer Cell Perturb Angular Correlation Small Unilamellar Vesicle Muramyl Dipeptide Cholesteryl Oleate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F.H. Roerdink, E. Wisse, H.W.M. Morselt, J. Van der Meulen and G.L. Scherphof, Cellular distribution of intravenously injected protein-containing liposomes in the rat liver, in: “Kupffer cells and other liver sinusoidal cells,” E. Wisse and D. Knook, Eds., Elsevier/North-Holland, Amsterdam (1977).Google Scholar
  2. 2.
    F. Roerdink, J. Dijkstra, G. Hartman, B. Bolscher and G. Scherphof, The involvement of parenchymal, Kupffer and endothelial liver cells in hepatic uptake of intravenously injected liposomes. Effects of lanthanum and gadolinium salts, Biochim. Biophys. Acta 677:79 (1981).CrossRefGoogle Scholar
  3. 3.
    G. Poste, C. Bucana, A. Raz, P. Bugelski, R. Kirsh and I.J. Fidler, Analysis of the fate of systemically administered liposomes and implications for their use in drug delivery, Cancer Res. 42:1412 (1982).Google Scholar
  4. 4.
    Y.E. Rahman, E.A. Cerny, K.R. Patel, E.H. Lau and B.J. Wright, Differential uptake of liposomes varying in size and lipid composition by parenchymal and Kupffer cells of mouse liver, Life Sci. 31:2061 (1982).CrossRefGoogle Scholar
  5. 5.
    G. Scherphof, F. Roerdink, J. Dijkstra, H. Ellens, R. de Zanger and E. Wisse, Uptake of liposomes by rat and mouse hepatocytes and Kupffer cells, Biol. Cell 47:47 (1981).Google Scholar
  6. 6.
    C.R. Alving, E.A. Steck, W.L. Chapman, Jr., V.B. Waits, L.D. Hendricks, G.M. Swartz, Jr. and W.L. Hanson, Therapy of Leishmaniasis: superior efficacies of liposome-encapsulated drugs, Proc. Natl. Acad. Sci. U.S.A. 75:2959 (1978).CrossRefGoogle Scholar
  7. 7.
    G. Lopez-Berestein, R. Mehta, R.L. Hopfer, K. Mills, L. Kasi, K. Mehta, V. Fainstein, M. Luna, E.M. Hersh and R. Juliano, Treatment and prophylaxis of disseminated infection due to Candida albicans in mice with liposome-encapsulated amphotericin B, J. Infect. Dis. 147:939 (1983).CrossRefGoogle Scholar
  8. 8.
    G. Lopez-Berestein, R.L. Hopfer, R. Mehta, K. Mehta, E.M. Hersh and R.L. Juliano, Liposome-encapsulated amphotericin B for treatment of disseminated candidiasis in neutropenic mice, J. Infect. Dis. 150:278 (1984).CrossRefGoogle Scholar
  9. 9.
    I.A.J.M. Bakker-Woudenberg, A.F. Lokerse, F.H. Roerdink, D. Regts and M.F. Michel, Free vs. liposome-entrapped ampicillin in the treatment of Listeria monocytogenes infection in normal mice and athymic (nude) mice, J. Infect. Dis. 151:917 (1985).CrossRefGoogle Scholar
  10. 10.
    G. Poste, C. Bucana and I.J. Fidler, Stimulation of host response against metastatic tumours by liposome-encapsulated immunomodulators, in: “Targeting of drugs,” G. Gregoriadis, J. Senior and A. Trouet, eds., Plenum, New York (1982).Google Scholar
  11. 11.
    J. Dijkstra, W.J.M. van Galen, C.E. Hulstaert, D. Kalicharan, F.H. Roerdink and G.L. Scherphof, Interaction of liposomes with Kupffer cells in vitro, Exp. Cell Res. 150:161 (1984).CrossRefGoogle Scholar
  12. 12.
    J. Dijkstra, M. van Galen and G.L. Scherphof, Effects of ammonium chloride and chloroquine on endocytic uptake of liposomes by Kupffer cells in vitro, Biochim. Biophys. Acta 804:58 (1984).CrossRefGoogle Scholar
  13. 13.
    J. Dijkstra, M. van Galen, D. Regts and G. Scherphof, Uptake and processing of liposomal phospholipids by Kupffer cells in vitro, Eur. J. Biochem. 148:391 (1985).CrossRefGoogle Scholar
  14. 14.
    J. Dijkstra, M. van Galen and G. Scherphof, Influence of liposome charge on the association of liposomes with Kupffer cells in vitro. Effects of divalent cations and competition with latex particles. Biochim. Biophys. Acta 813:287 (1985).CrossRefGoogle Scholar
  15. 15.
    J. Dijkstra, M. van Galen and G. Scherphof, Effects of (dihydro)-cytochalasin B, colchicine, monensin and trifluoperazine on uptake and processing of liposomes by Kupffer cells in culture. Biochim. Biophys. Acta 845:34 (1985).CrossRefGoogle Scholar
  16. 16.
    R.L. Juliano and D. Stamp, The effects of particle size and charge on the clearance rates of liposomes and liposome encapsulated drugs, Biochem. Biophys. Res. Commun. 63:651 (1975).CrossRefGoogle Scholar
  17. 17.
    F. Roerdink, J. Regts, B. van Leeuwen and G. Scherphof, Intrahepatic uptake and processing of intravenously injected small unilamellar phospholipid vesicles in rats, Biochim. Biophys. Acta 770:195 (1984).CrossRefGoogle Scholar
  18. 18.
    H.H. Spanjer, Targeting of liposomes to liver cells in vivo, Ph.D. Thesis, State University Groningen, 1985.Google Scholar
  19. 19.
    G. Gregoriadis and J. Senior, The phospholipid component of small unilamellar liposomes controls the rate of clearance of entrapped solutes from the circulation, FEBS Lett. 119:43 (1980).CrossRefGoogle Scholar
  20. 20.
    P.-S. Wu, G.W. Tin and J.D. Baldeschwieler, Phagocytosis of carbohydrate-modified phospholipid vesicles by macrophage, Proc. Natl. Acad. Sci. U.S.A. 78:2033 (1981).CrossRefGoogle Scholar
  21. 21.
    R.A. Schwendener, P.A. Lagocki and Y.E. Rahman, The effects of charge and size on the interaction of unilamellar liposomes with macrophages, Biochim. Biophys. Acta 772:93 (1984).CrossRefGoogle Scholar
  22. 22.
    J.D. Baldeschwieler, Phospholipid vesicle targeting using synthetic glycolipid and other determinants, Ann. N.Y. Acad. Sci. U.S.A. 446:349 (1985).CrossRefGoogle Scholar
  23. 23.
    J.C. Wilschut, J. Regts, H. Westenberg and G. Scherphof, Hydrolysis of phosphatidylcholine liposomes by phospholipases A2, Effects of the local anaesthetic dibucaine. Biochim. Biophys. Acta 433:20 (1976).CrossRefGoogle Scholar
  24. 24.
    R.E. Niemann and B. Lorder, Listeriosis in adults: a changing pattern. Report of eight cases and review of the literature, Rev. Inf. Dis. 2:207 (1980).CrossRefGoogle Scholar
  25. 25.
    G. Lopez-Berestein, V. Fainstein, R. Hopfer, K. Mehta, M.P. Sullivan, M. Keating, M.G. Rosenblum, R. Mehta, M. Luna, E.M. Hersh, J. Reuben, R.L. Juliano and G.P. Bodey, Liposomal amphotericin B for the treatment of systemic fungal infections in patients with cancer: a preliminary study, J. Infect. Dis. 151:704 (1985).CrossRefGoogle Scholar
  26. 26.
    E.S. Kleinerman, A.J. Schroit and W.E. Fogler, Tumoricidal activity of human monocytes activated in vitro by free and liposome-encapsulated human lymphokines. J. Clin. Invest. 72:304 (1983).CrossRefGoogle Scholar
  27. 27.
    L. Varesio, E. Blasi, G.B. Thurman, J.E. Talmadge, R.H. Wiltrout and R.B. Herberman, Potent activation of mouse macrophages by recombinant interferon, Cancer Res. 44:4465 (1984).Google Scholar
  28. 28.
    G. Lopez-Berestein, K. Mehta, R. Mehta, R.L. Juliano and E.M. Hersh, The activation of human monocytes by liposome-encapsulated muramyl dipeptide analogues, J. Immunol. 130:1500 (1983).Google Scholar
  29. 29.
    S. Sone and I.J. Fidler, In vitro activation of tumoricidal properties in rat alveolar macrophages by synthetic muramyl dipeptide encapsulated in liposomes. Cell. Immunol. 57:42 (1981).CrossRefGoogle Scholar
  30. 30.
    I.J. Fidler, Z. Barnes, W.E. Fogler, R. Kirsh, P. Bugelski and G. Poste, Involvement of macrophages in the eradication of established metastases following intravenous injection of liposomes containing macrophage activators, Cancer Res. 42:496 (1982).Google Scholar
  31. 31.
    P.S. Thombre and S.D. Deodhar, Inhibition of liver metastases in murine colon adenocarcinoma by liposomes containing human C-reactive-protein or crude lymphokine, Cancer Immunol. Immunother. 16:145 (1984).CrossRefGoogle Scholar
  32. 32.
    Z.L. Xu, C.D. Bucana and I.J. Fidler, In vitro activation of murine Kupffer cells by lymphokines or endotoxins to lyse syngeneic tumor cells, Am. J. Pathol. 117:372 (1984).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Frits Roerdink
    • 1
  • Joke Regts
    • 1
  • Toos Daemen
    • 1
  • Irma Bakker-Woudenberg
    • 2
  • Gerrit Scherphof
    • 1
  1. 1.Laboratory of Physiological ChemistryUniversity of GroningenGroningenThe Netherlands
  2. 2.Department of Clinical MicrobiologyErasmus University RotterdamRotterdamThe Netherlands

Personalised recommendations