Polymers as Matrices for Drug Release

  • Paolo Ferruti
Part of the NATO ASI Series book series (NSSA, volume 113)


The pharmaceutical applications of synthetic polymers may be broadly divided into two main sections: the physical incorporation of active molecules into a polymeric matrix, from which they may be subsequently released either by diffusion processes, or by erosion and the synthesis of pharmacologically active polymers. Pharmacologically active polymers may be classified as follows:
  1. 1.

    Polymers which are pharmacologically active per se, their activity dependant on macromolecularity. The corresponding monomers, or non-macro-molecular models, are inactive.

  2. 2.

    Polymers whose activity depends on moieties structurally related to well known non-macromolecular drugs, linked to the macromolecular backbone with covalent bonds which are not expected to be cleaved in order to exert activity.

  3. 3.

    Polymers which are able to give rise to non-macromolecular active substances after administration. These may be further divided into two main categories: a) Polymers in which residues of active molecules are constituents of the main backbone. Consequently, the active molecules are released by degradation of the whole macromolecule; b) Polymers in which residues of active molecules are linked as side substituents to a polymeric or oligomeric structure with covalent bonds cleavable in body environments. The release of active molecules does not necessarily involve a degradation of the whole produce, which may or may not take place as a separate process.



Acrylic Acid Ursodeoxycholic Acid Anhydride Group Carbamic Acid Amido Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Drobnik and F. Rypacek, Soluble synthetic polymers in biological systems, Advanc. Polym. Sci. 57:1 (1984).CrossRefGoogle Scholar
  2. 2.
    R. Duncan and J. Kopecek, Soluble synthetic polymers as potential drug carriers, Advanc. Polym. Sci. 57:53 (1984).Google Scholar
  3. 3.
    J. Pitha, Polymer-cell surface interactions and drug targeting in: “Targeted Drugs”, E. Goldberg, ed., John Wiley and Sons, New York (1983).Google Scholar
  4. 4.
    P. Ferruti, Macromolecular drugs acting as precursors of non-macro-molecular active substances. Preliminary considerations, Pharmacol. Res. Commun. 7:1 (1975).CrossRefGoogle Scholar
  5. 5.
    P. Ferruti, Macromolecular Drugs, Il Farmaco, Ed. Sci. 3:220 (1977).Google Scholar
  6. 6.
    H. Ringsdorf, Synthetic Polymeric Drugs, Mid. Macromolecular Monogr. 5:197 (1978).Google Scholar
  7. 7.
    P. Ferruti and F. Vaccaroni, Polymeric acrylic and methacrylic esters I and amines by reaction of poly(acrylic acid) and poly(methacrylic acid) with N,N’-carbonyldiimidazole and alcohols or amines, J. Pol. Sci. 13:2859 (1975).Google Scholar
  8. 8.
    P. Ferruti, A. Fere and G. Cottica, Poly-1-acryloylbenzotriazole as polyester and Polyacrylamide precursor, J. Polym. Sci. 12:553 (1974).Google Scholar
  9. 9.
    H.G. Batz, G. Franzmann and H. Ringsdorf, Model reactions for synthesis of pharmacologically active polymers by way of monomeric and polymeric reactive esters, Angew. Chem. 12:1103 (1972).Google Scholar
  10. 10.
    P. Ferruti, A. Bettelli and A. Fere, High polymers of acrylic and methacrylic esters of N-hydroxysuccinimide as Polyacrylamide and polymethacrylamide precursors, Polymer. 13:462 (1972).CrossRefGoogle Scholar
  11. 11.
    C.P. Su and H. Morawetz, Reactivity of polymer substituents. Aminolysis of p-nitrophenylester residues attached to various polymer backbones, J. Polym. Sci. 15:185 (1977).Google Scholar
  12. 12.
    P. Ferruti and G. Cottica, 1-Methacryloylimidazole as methacrylating agent, J. Polym. Sci. 12:2453 (1974).Google Scholar
  13. 13.
    H.G. Batz and J. Koldehoff, Monomere und Polymere Succinimidoester von co-Methacryloylaminosäuren, ihre Darstellung und inhre Reaktion mit Aminen, Makromol. Chem. 177:683 (1976).CrossRefGoogle Scholar
  14. 14.
    P. Ferruti, F. Vaccaroni and M.C. Tanzi, Synthesis and exchange reactions of some polymeric benzotriazolides, J. Polym. Sci., 16:1435 (1978).Google Scholar
  15. 15.
    R. Duncan and J.B. Lloyd, Degradation of side chains of N-(2-hydroxy-propyl) methacylamide copolymers by lysosomal enzymes, Biochem. Biophys. Res. Commun. 94:284 (1980).CrossRefGoogle Scholar
  16. 16.
    R. Duncan, H.C. Cable, J.B. Lloyd, P. Rejmanova and J. Kopecek, Polymers containing enzymatically degradable bonds, Makromol. Chem. 184:1997 (1983).Google Scholar
  17. 17.
    P. Ferruti, Functionalization of polymers in: “Reactions on Polymers”, J.A. Moore ed., D. Reidel Publishing Co., Boston (1973).Google Scholar
  18. 18.
    P. Ferruti, A.S. Angeloni, G. Scapini and M.C. Tanzi, New oligomers and polymers as drug carriers in: “Recent Advances in Drug Delivery Systems”, J.M. Anderson and S.W. Kim, eds., Plenum Press, New York, (1984).Google Scholar
  19. 19.
    P. Ferruti, M.C. Tanzi and F. Vaccaroni, Polymeric hydrazides by reaction of hydrazine with polymeric benzotriazolides, J. Polym. Sci. 17:277 (1979).Google Scholar
  20. 20.
    G. Franzamann and H. Ringsdorf, Pharmakologisch aktive Polymere, 12: Depotformen von Chlorambucil durch kovalente Bindung on Polymere, Makromol. Chem., 177:2547 (1976).CrossRefGoogle Scholar
  21. 21.
    N. Ghedini, P. Ferruti, V. Andrisano and G. Scapini, Synthesis of a high molecular weight polymeric derivative of 3α,7β-dihydroxy-5β-cholan-24-oic acid (ursodeoxycholic acid), Synth. Comm. 13:707 (1983).CrossRefGoogle Scholar
  22. 22.
    An example of Polymer/drug (dopamine) combination was given by G. Reinish at the 26th minisymposium on “Polymers in Medicine and Biology”, Prague, July 9–12, 1984.Google Scholar
  23. 23.
    T. Hirano, W. Klesse and H. Ringsdorf, Polymeric derivatives of activated cyclophosphamide as drug delivery systems in antitumor chemotherapy, Makromol. Chem. 180:1125 (1979).CrossRefGoogle Scholar
  24. 24.
    P.P. Umrigar, S. Ohasshi and G.B. Butler, Synthesis and properties of alternating copolymers of potential antitumor activity containing 5-fluorouracil, J. Polym. Sci. 17:351 (1979).Google Scholar
  25. 25.
    F. Ascoli, G. Casini, M. Ferappi and E. Tubaro, A polymeric nitrofuran derivative with prolonged antibacterial action, J. Med. Chem. 10: 97 (1967).CrossRefGoogle Scholar
  26. 26.
    J. Pitha, S. Zawadzki and B.A. Hughes, Carriers for drugs and enzymes based on copolymers of allylglycidylether with acrylamide, Makromol. Chem. 183:781 (1982).CrossRefGoogle Scholar
  27. 27.
    J.C. Brosse, J.C. Soutif and G. Pinazzi, Synthesis and modification of some new acrylate polymers. Fixation of active compounds, Proceedings I.U.P.A.C. 28th Macromol. Symposium, Amherst, Mass, USA, p.383 (1982).Google Scholar
  28. 28.
    C. Pinazzi, J.C. Rabadeaux and A. Pleurdeau, Synthèse et polymerization de polyméthacrylates porteurs de la quinine. Etude comparée de la toxicité et de l’immunogénicité des formes libres et poly-mériques, Makromol. Chem. 179:1699 (1978).CrossRefGoogle Scholar
  29. 29.
    M. Tahan, Y. Calderon and A. Zilkha, Synthesis of some polymer models of potentially biologically active compounds, Israel J. Chem. 12: 785 (1973).Google Scholar
  30. 30.
    G. Domke, I. Lüderwald, M. Medina, R. Mantoya, L. Bravoluga, H. Ringsdorf, E. Schmidt, A.M. Silva, J. Soto and G. Walter, The prolongation of the action of pharmaceutical preparations Chemical radioprotection with polymers, Polym. Prepr. Am. Chem. Soc. 16:494 (1975).Google Scholar
  31. 31.
    G. Batz, H. Ringsdorf and H. Ritter, Pharmacologically active polymers; 7. Cyclophosphamide and steroid hormone-containing polymers as potential anticancer agents, Makromol. Chem. 175:2229 (1974).CrossRefGoogle Scholar
  32. 32.
    H.G. Batz, H. Daniel, G. Franzmann, J. Koldehoff, H. Herz, H. Ringsdorf and K. Stokhaus, Pharmakologisch aktive Polymere, Arzneim. Forsch, 27:1884 (1977).Google Scholar
  33. 33.
    G. Pinazzi, J.P. Benoit, J.C. Rabadeux and A. Pleurdeau, Synthese de polymères porteurs d’un antivitamine K, la Phénindione, Eur. Polym. J. 15:1069 (1979).CrossRefGoogle Scholar
  34. 34.
    P. Molz, H. Ringsdorf, G. Abel and P.J. Cox, Synthesis and first in vitro cytotoxicity studies of bis (2- chloroethyl) amino groups containing polymers. Pharmacologically active polymers 22, Int. J. Biol. Macromol. 2:245 (1980).CrossRefGoogle Scholar
  35. 35.
    T. Hirano, H. Ringsdorf and D.S. Zaharko, Antitumor activity of monomeric and polymeric cyclophosphamide derivatives compared with in vitro hydrolysis, Cancer Res. 40:2263 (1980).Google Scholar
  36. 36.
    G. Bauduin, D. Bondon, J. Martel, Y. Pietrasanta and B. Pucci, Study of telomers with potential pharmacological activity. 2. Telomers of acrylic acid and grafting of hydroxylated compounds, Makromol. Chem. 182:773 (1981).CrossRefGoogle Scholar
  37. 37.
    G. Bauduin, J.M. Bessière, D. Bondon, J. Martel and Y. Pietrasanta, Recherche de télomeres à activité pharmacologique potentielle, 4. Reactions sur les telomères de l’alcool vinylique, Makromol. Chem. 182:3397 (1981).CrossRefGoogle Scholar
  38. 38.
    G. Bauduin, J.M. Bessière, D. Bondon, J. Martel and Y. Pietrasanta, Recherche de telomeres à activité pharmacologique potentielle. 5. Reactions sur les telomères de l’acide acrylique, Makromol. Chem. 183:3491 (1982).Google Scholar
  39. 39.
    G.P. Pinazzi, A. Menil, J.C. Rabadeux and A. Pleurdeau, Polyiso-prenes and polybutadiene derivatives of potential biomedical interest. Part II. J. Polym. Sci. 52:1 (1975).Google Scholar
  40. 40.
    G.P. Pinazzi, A. Menil, J.C- Rabadeux and A. Pleudeau, Polyisoprenes and polybutadiene derivatives of testosterone, Polymer, 12:447 (1974).Google Scholar
  41. 41.
    A.F. Bückmann, M. Morr and G. Johansson, Punctionalization of poly (ethylene glycol) and monomethoxy-poly (ethylene glycol), Makromol. Chem. 182:1379 (1981).CrossRefGoogle Scholar
  42. 42.
    A. Chaabouni, P. Hubert, E. Dellacherie and J. Neel, Synthese de poly(oxyéthylène)s rendus biospécifiques par fixation de Steroides en extrémités de chains. Utilisation d’un poly-(oxyethylene) substitué par des groupes estradiol pour extraire l’isomérase 5→4 oxo-3 Steroide par partage d’affinité, Makromol. Chem. 179:1135 (1978).CrossRefGoogle Scholar
  43. 43.
    J.C. Galin, P. Rempp and J. Parrod, Preparation de chaînes macromoléculaires dotées d’extrémités functionnelles réactives, C.R. Acad. Sc. Paris, 260:5558 (1965).Google Scholar
  44. 44.
    J.M. Harris, N.H. Hundley, T.G. Shannow and E.C. Stuck, Poly(ethylene glycols) as soluble, recoverable, phase-transfer catalysts, J. Org. Chem. 47:4789 (1982).CrossRefGoogle Scholar
  45. 45.
    J.M. Harris and J. Milton, Laboratory synthesis of polyethylene glycol derivatives, J. Makromol. Sci. 25:325 (1985).Google Scholar
  46. 46.
    A. Okamoto, K. Toyoshima and I. Mita, Kinetic study on reactions between polymer chain-ends II, Eur. Polym. J. 19:341 (1983).CrossRefGoogle Scholar
  47. 47.
    S. Zalipsky, C. Gilon and A. Zilkha, Attachment of drugs to poly-ethylene glycols, Eur. Polym. J. 19:1177 (1983).CrossRefGoogle Scholar
  48. 48.
    F. Brandstetter, H. Scott and E. Bayer, New polymer protecting group in oligonucleotide synthesis. 2. Hydroxyethyl-phenyl-thio-ether of polyethylene glycol, Tetrahedron Lett., 31:2705 (1974).CrossRefGoogle Scholar
  49. 49.
    J. Pitha, K. Kocilek and M.G. Caron, Detergents linked to polysaccharides: preparation and effects on membranes and cells, Eur. J. Biochem. 94;11 (1979).CrossRefGoogle Scholar
  50. 50.
    L. Tondelli, M. Laus and A.S. Angeloni, Poly(ethylene glycol) imidazolyl formates as oligomeric drug-binding matrices, J. Controll. Release 1:251 (1985).CrossRefGoogle Scholar
  51. 51.
    P. Ferruti, M.C. Tanzi, L. Rusconi and R. Cecchi, Succinic half-esters of poly(ethylene glycol)s and their benzotriazole and imidazole derivatives as oligomeric drug-binding matrices, Makromol. Chem. 182:2183 (1981).CrossRefGoogle Scholar
  52. 52.
    L. Ruscono, M.C. Taniz, C. Zambelli and P. Ferruti, Activated derivatives of succinic and glutaric half- — esters of polypropylene glycols, and their exchange reactions with hydroxy- and amino-compounds. Polymer 23:1689 (1982).CrossRefGoogle Scholar
  53. 53.
    E. Boccu’, R. Largajolli and F.M. Veronese, Coupling of monomethoxy polyethylene glycols to proteins via active esters, Z. Natur. Forsch. C. Biosci. 38C:94 (1983).Google Scholar
  54. 54.
    F.M. Veronese, R. Largajolli, E. Boccu’, C.A. Benassi and O. Schiavon, Appl. Biochem. Biotechnol., in press (1986).Google Scholar
  55. 55.
    R. Cecchi, L. Rusconi, M.C. Tanzi, F. Danusso and P. Ferruti, Synthesis and pharmacological evaluation of poly(oxyethylene) derivatives of 4-isobuthylphenyl-2-propionic acid (Ibuprofen) J. Med. Chem. 24:622 (1981).CrossRefGoogle Scholar
  56. 56.
    N. Ghedini, P. Ferruti, V. Andrisano, M.R. Cesaroni and G. Scapini, Oligomeric derivatives of 3α, 7β- -dihydroxy-5β-cholan-24-oic acid (ursodeoxycholic acid), Synth. Comm. 13:701 (1983).CrossRefGoogle Scholar
  57. 57.
    N. Ghedini, V. Andrisano, V. Zecchi, A. Tartarini, G.G. Scapini and P. Ferruti, J. Controll. Release, in press (1986).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Paolo Ferruti
    • 1
  1. 1.Facolta d’IngegneriaUniversita di BresciaBresciaItaly

Personalised recommendations