Targeting of Colloidal Carriers and the Role of Surface Properties

  • S. S. Davis
  • S. J. Douglas
  • L. Illum
  • P. D. E. Jones
  • E. Mak
  • R. H. Muller
Part of the NATO ASI Series book series (NSSA, volume 113)


Colloidal carriers in the form of liposomes, emulsions and microspheres have been studied as a means of delivering drugs to selected sites in the body following parenteral administration.1–3 By far the greatest attention has been focussed on the intravenous route, although some have mentioned the advantages of subcutaneous and intraperitoneal administration for delivery to the lymphatic system and regional lymph nodes.2


Kupffer Cell Nonionic Surfactant Colloidal Particle Solubility Parameter Coating Agent 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.S. Davis, L. Illum, J.G. McVie and E. Tomlinson, eds., “Microspheres and Drug Therapy: Pharmaceutical, Immunological and Medical Aspects”, Elsevier, Amsterdam (1984).Google Scholar
  2. 2.
    J.N. Weinstein and L.D. Leserman, Liposomes as drug carriers in cancer chemotherapy, Pharmac, Ther. 24:207 (1984).CrossRefGoogle Scholar
  3. 3.
    G. Gregoriadis, Targeting of drugs, Nature 265:407 (1977).CrossRefGoogle Scholar
  4. 4.
    L. Illum, S.S. Davis, C.G. Wilson, M. Frier, J.G. Hardy and N.W. Thomas, Blood clearance and organ deposition of intravenously administered colloidal particles: the effect of particle size, nature and shape, Int. J. Pharm. 12:135 (1982).CrossRefGoogle Scholar
  5. 5.
    T. Yoshioka, M. Hashida, S. Muranishi and H. Sezaki, Specific delivery of mitomycin C to the liver, spleen and lung: nano- and micro-spherical carriers of gelatin, Int. J. Pharm. 8:131 (1981).CrossRefGoogle Scholar
  6. 6.
    E. Wisse, Ultrastructure and function of Kupffer cells and other sinusoidal cells in the liver, in: “Kupffer Cells and Other Sinusoidal Cells”, E. Wisse and D.L. Knook, eds., Elsevier/North Holland Biomedical Press, Amsterdam (1977).Google Scholar
  7. 7.
    J.W.B. Bradfield, The reticuloendothelial system and blood clearance,Google Scholar
  8. in: “Microspheres and Drug Therapy: Pharmaceutical, Immunological and Medical Aspects”, S.S. Davis, L. Illum, J.G. McVie and E. Tomlinson, eds., Elsevier, Amsterdam, (1984).Google Scholar
  9. 8.
    G. Poste, O. Bucana, A. Raz, P. Bugeski, R. Kirsh and I.J. Fidler, Analysis of the fate of systemically administered liposomes and implications for their use in drug delivery, Cancer Res. 42:1412 (1982).Google Scholar
  10. 9.
    C.R. Alving, E.A. Steck, W.L. Chapman, V.B. Waits, L.D. Hendricks, G.M. Schwartz and W.L. Hanson, Therapy of leishmaniasis: superior efficacies of liposome-encapsulated drugs. Proc. Natl. Acad. Sci. U.S.A. 75:2959 (1978).CrossRefGoogle Scholar
  11. 10.
    R.L. Hopfer, K. Mills, R. Mehta, G. Lopez-Berestein, V. Fainstein and R.L. Juliano, In-vitro antifungal activities of Amphotericin B and liposome encapsulated Amphotericin B, Antimicrob. Agents Chemother. 25:387 (1984).CrossRefGoogle Scholar
  12. 11.
    G. Poste and R. Kirsh, Site specific (targeted) drug delivery in cancer chemotherapy, Biotechnol. 1:869 (1984).CrossRefGoogle Scholar
  13. 12.
    R.T. Proffitt, L.E. Williams, C.A. Presant, G.W. Tin, J.A. Oliana, R.C. Gamble and J.D. Baldeschweiler, Liposomal blockade of the reticuloendothelial system. Improved tumor imaging with small unilamellar vesicles, Science 220:502 (1983).CrossRefGoogle Scholar
  14. 13.
    I. Fraser, H. Pearson, V. Bowry and P.R.F. Bell, The intravenous Intralipid tolerance test, J. Leuk. Biol. 36:347 (1984).Google Scholar
  15. 14.
    F. Roerdink, J. Regts, B. Van Leeuwen and G. Scherphof, Intrahepatic uptake and processing of intravenously injected small unilamellar phospholipid vesicles in rat, Biochim. Biophys. Acta 770:195 (1984).CrossRefGoogle Scholar
  16. 15.
    C. Capo, F. Garrouste, A.M. Benoliel, P. Bongrand and R. Depieds, Non-specific binding to macrophages: evaluation of the influence of medium-range electrostatic repulsion and short-range hydrophobic interaction, Immunol. Commun. 10:35 (1981).Google Scholar
  17. 16.
    L. Illum, P.D.E. Jones, J. Kreuter, R.W. Baldwin and S.S. Davis, Adsorption of monoclonal antibodies to polyhexylcyanoacrylate nanoparticles and subsequent immunospecific binding to tumour cells in vitro, Int. J. Pharm. 17:65 (1983).CrossRefGoogle Scholar
  18. 17.
    T.M. Saba, Physiology and physiopathology of the reticuloendothelial system, Arch. Intern. Med. 126:1031 (1970).CrossRefGoogle Scholar
  19. 18.
    A. Rembaum, J. Ugelstad, J.T. Kemshead, M. Chang and G. Richards, Cell labelling and separation by means of mono-disperse magnetic and non-magnetic microspheres, in: “Microspheres in Drug Therapy: Pharmaceutical, Immunological and Medical Aspects”, S.S. Davis, L. Illum, J.G. McVie and E. Tomlinson, eds., Elsevier, Amsterdam, (1984).Google Scholar
  20. 19.
    P.R. Rutter and B. Vincent, The adhesion of micro-organisms to surfaces: physicochemical aspects, in: “Microbial adhesion to surfaces”, R.C.W. Berkeley, J.M. Lynch, J. Melling, P.R. Rutter and B. Vincent, eds., Ellis Horwood, Chichester, (1980).Google Scholar
  21. 20.
    D.H. Napper “Polymeric Stabilisation of Colloidal Dispersions”, Academic Press, London (1983).Google Scholar
  22. 21.
    A. Silberberg, The role of membrane-bound macromolecules and macromolecules in solution in cell/cell encounters in flowing blood, Ann. N.Y. Acad. Sci. 416:83 (1984).CrossRefGoogle Scholar
  23. 22.
    P.R. Rutter, The physical chemistry of the adhesion of bacteria and other cells, in: “Cell Adhesion and Motility”, A.S.G. Curtis and J.D. Pitts, eds., Cambridge University Press, Cambridge, (1980).Google Scholar
  24. 23.
    J.B. Kayes and D.A. Rawlins, Adsorption characteristics of certain polyoxyethylene-polyoxypropylene block copolymers on polystyrene latex, Colloid Polymer Sci. 257:622 (1979).CrossRefGoogle Scholar
  25. 24.
    J.M. Roe and B.W. Barry, Photon correlation spectroscopy of pharmaceutical systems (sodium dodecyl sulphate, sodium deosycholate and chloropromazine hydrochloride mcielles and polystyrene latices), Int. J. Pharm. 14:159 (1983).CrossRefGoogle Scholar
  26. 25.
    A.W. Preece and N.P. Luckman, A laser doppler cytopherometer for measurement of electrophoretic mobility of bioparticles, Phys. Med. Biol. 26:11 (1981).CrossRefGoogle Scholar
  27. 26.
    K. Schatzel and J. Merz, Measurement of small electrophoretic mobilities by light scattering and analysis of the amplitude weighted phase structure function, J. Chem. Phys. 81:2482 (1984).CrossRefGoogle Scholar
  28. 27.
    S.J. Douglas, L. Illum, S.S. Davis and J. Kreuter, Particle size and size distribution of poly(butyl 2-cyanoacrylate) nanoparticles. Influence of physicochemical factors, J. Colloid Interface Sci. 101:149 (1984).CrossRefGoogle Scholar
  29. 28.
    S.J. Douglas, L. Illum and S.S. Davis, Particle size and size distribution of poly(butyl 2-cyanoacrylate) nanoparticles. Influence of added stabilisers, J. Colloid Interface Sci. 103:154 (1985).CrossRefGoogle Scholar
  30. 29.
    S.J. Douglas, L. Illum and S.S. Davis, Poly(butyl 2-cyanoacrylate) nanoparticles with differing surface charges, J. Controlled Release, in press.Google Scholar
  31. 30.
    G. Halperin, M. Tauber-Finkelstein and S. Shaltiel, Hydrophobic chromatography of cells: Adsorption and resolution on homologous series of alkylagaroses, J. Chrom. 317:103 (1984).CrossRefGoogle Scholar
  32. 31.
    V.P. Shanbhag and C.G. Axelsson, Hydrophobic interaction determined by partition in aqueous two-phase systems. Partition of proteins in systems containing fatty acid esters of poly(ethylene glycol), Eur. J. Biochem. 60:17 (1975).CrossRefGoogle Scholar
  33. 32.
    T. Malmqvist, Bacterial hydrophobicity measured as partition of palmitic acid between the two immiscible phases of cell surface and buffer, Acta Path. Microbiol. Immunol. Scand., Sect. B, 91:69 (1983).Google Scholar
  34. 33.
    M. Rosenberg, D. Gutnick and E. Rosenberg, Adherence of bacteria to hydrocarbons: A simple method for measuring cell-surface hydrophobicity, FEMS Lett. 9:29 (1980).CrossRefGoogle Scholar
  35. 34.
    L. Illum, M.A. Khan, E. Mak and S.S. Davis, Evaluation of the carrier capacity for poly(butyl 2-cyanoacrylate) nanoparticles, In preparation.Google Scholar
  36. 35.
    Y. Huh, G.W. Donaldson and F.T. Johnson, A radiation-induced bondingGoogle Scholar
  37. of iodine at the surface of uniform polystyrene particles, Radiat. Res. 60:42 (1974).Google Scholar
  38. 36.
    S.J. Douglas, The preparation and characterisation of poly(alkyl) cyanoacrylate) nanoparticles, PhD Thesis, University of Nottingham (1986).Google Scholar
  39. 37.
    E. Henze, H.R. Schelbert, J.D. Collins, A. Hajaj, J.R. Barrio and L.K. Benet, Lymphoscintigraphy with Tc-99m labeled dextran, J. Nucl. Med. 23:923 (1982).Google Scholar
  40. 38.
    B. Kronberg, Thermodynamics of adsorption of nonionic surfactants on latexes, J. Colloid Interface Sci. 96:55 (1983).CrossRefGoogle Scholar
  41. 39.
    B. Kronberg and P. Stenius, The effect of surface polarity on the adsorption of non-ionic surfactants. I. Thermodynamic considerations, J. Colloid Interface Sci. 102:410 (1984).CrossRefGoogle Scholar
  42. 40.
    B. Kronberg, P. Stenius and G. Igeborn, The effect of surface polarity on the adsorption of non-ionic surfactants. II. Adsorption to poly(methylmethacrylate) latex, J. Colloid Interface Sci. 102: 418 (1984).CrossRefGoogle Scholar
  43. 41.
    F. Roerdink, N.M. Wassaf, E.C. Richardson and C.R. Alving, Effects of negatively charged lipids on phagocytosis of liposomes opsonized by complement, Biochim. Biophys. Acta, 734:33 (1983).CrossRefGoogle Scholar
  44. 42.
    T.P. Stossel, R.J. Mason, J. Hartwig and M. Vaughan, Quantitative studies of phagocytosis by polymorphonuclear leukocytes. Use of emulsions to measure the initial rate of phagocytosis, J. Clin. Invest. 51:615 (1972).CrossRefGoogle Scholar
  45. 43.
    D.L. Knook and E.C. Sleyster, Preparation and characterisation of Kupffer cells from rat and mouse liver, in: “Kupffer Cells and Other Sinusoidal Cells”, E. Wisse and D.L. Knook, eds., Elsevier/North Holland Biomedical Press, (1977).Google Scholar
  46. 44.
    C.J. van Oss, D.R. Absolom and H.W. Neumann, Interaction of phagocytes with other blood cells and with pathogenic and nonpathogenic microbes, Ann. N.Y. Acad. Sci. 416:332 (1984).CrossRefGoogle Scholar
  47. 45.
    E. Whitnack, A.L. Bisno and E.H. Beachey, Hyaluronate capsule prevents attachment of group A streptococci to mouse peritoneal macrophages, Infect. Immun. 31:985 (1981).Google Scholar
  48. 46.
    R.J. Grasso, R. Ganguly and J.F. Breen, Inhibition of yeast phagocytosis in macrophage cultures treated with slime polysaccharide purified from Pseudomonas aeruginosa, J. Leuk. Biol. 36:771 (1984).Google Scholar
  49. 47.
    S.S. Davis and P.J. Hansrani, The effect of surface characteristics on the phagocytosis of lipid particles, Int. J. Pharm. 23:69 (1985).CrossRefGoogle Scholar
  50. 48.
    L. Illum and S.S. Davis, Effect of non-ionic surfactants on the fate and deposition of polystyrene microspheres following intravenous administration, J. Pharm. Sci. 72:1086 (1983).CrossRefGoogle Scholar
  51. 49.
    L. Illum and S.S. Davis, The organ uptake of intravenously administered colloidal particles can be altered using a non-ionic surfactant (Poloxamer 338), FEBS Lett. 167:79 (1984).CrossRefGoogle Scholar
  52. 50.
    L. Illum and S.S. Davis, The kinetics of uptake and organ distribution of colloidal drug carrier particles delivered to rabbits, Proc. Second European Congress on Biopharmaceutics and Pharmacokinetics, Salamanca, Spain, Vol. II, 97 (1984).Google Scholar
  53. 51.
    D.P. Praaning-van Dalen, A. Brouwer and D.L. Knook, Clearance capacity of rat liver Kupffer, endothelial and parenchymal cells, Gastroenterol. 81:1036 (1981).Google Scholar
  54. 52.
    K. Yoshida, H. Nagata and H. Hoshi, Uptake of carbon and polystyrene particles by the sinusoidal endothelium of rabbit bone marrow and liver and rat bone marrow, with special reference to multiparticle-pinocytosis, Arch. Histol. Jap. 47:303 (1984).CrossRefGoogle Scholar
  55. 53.
    D. Leu, B. Manthey, J. Kreuter, P. Speiser and R.P. DeLuca, Distribution and elimination of coated polymethyl [2-C14] methacrylate nanoparticles after intravenous injections in rats, J. Pharm. Sci. 73:1433 (1984).CrossRefGoogle Scholar
  56. 54.
    W. Norde, Adsorption of proteins at solid surfaces, in: “Adhesion and adsorption of polymers”, L. Lee, ed., Plenum Press, New York, (1978).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • S. S. Davis
    • 1
  • S. J. Douglas
    • 1
  • L. Illum
    • 2
  • P. D. E. Jones
    • 1
  • E. Mak
    • 1
  • R. H. Muller
    • 1
  1. 1.Pharmacy DepartmentUniversity of NottinghamNottinghamEngland
  2. 2.Pharmaceutics DepartmentRoyal Danish School of PharmacyDenmark

Personalised recommendations