Skip to main content

Cytochromes P-450 and the Activation and Inactivation of Mutagens and Carcinogens

  • Chapter
Antimutagenesis and Anticarcinogenesis Mechanisms

Abstract

The activation and inactivation of a wide variety of endogenous and exogenous compounds, including alkanes, fatty acids, steroids, drugs, polycyclic hydrocarbons, carcinogens, and mutagens, are catalyzed by the cytochrome P-450-dependent drug metabolism system (5). This system is found in the endoplasmic reticulum of various mammalian tissues and organs, e.g., lung, small intestines, etc. (20, 24), but the greatest concentration and activity are in the liver (5). For this reason, many pioneering studies on the activation or inactivation of carcinogens, mutagens, and other drugs have been carried out using hepatic microsomes from various animal models. In turn, mammalian liver also was used in attempts to isolate, purify, and characterize components of the mixed-function oxidase system.

Supported by Grant CA37148 from the National Cancer Institute and Grant Ag02081 from the National Institute of Aging, DHHS.

Recipient of a Rosalie B. Hite Fellowship for Cancer Research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ames, B.N., W.E. Durston, E. Yamasaki, and F.D. Lee (1973) Carcinogens are mutagens: A simple test system combining liver homogenätes for activation and bacteria for detection. Proc. Natl. Acad. Sei., USA 70:2281–2285.

    Article  CAS  Google Scholar 

  2. Dignam, J.D., and H.W. Strobel (1977) NADPH-cytochrome P-450 reductase from rat liver: Purification by affinity chromatography and characterization. Biochemistry 16:1116–1123.

    Article  CAS  Google Scholar 

  3. Dignam, J.D., and H.W. Strobel (1975) Preparation of homogeneous NADPH-cytochrome P-450 reductase from rat liver. Biochem. Biophys. Res. Commun. 63:845–852.

    Article  CAS  Google Scholar 

  4. Fang, W.F., and H.W. Strobel (1982) Effects of cyclophosphamide and polycyclic aromatic hydrocarbons on cell growth and mixed-function oxidase activity in a human colon tumor cell line. Cancer Res. 42:3676–3681.

    CAS  Google Scholar 

  5. Gillette, J.R. (1966) Biochemistry of drug oxidation and reduction by enzymes in hepatic endoplasmic reticulum. Adv. Pharmacol. 4:219–261.

    Article  CAS  Google Scholar 

  6. Guengerich, F.P., G.A. Dannan, S.T. Wright, M.V. Martin, and L.S. Kaminsky (1982) Purification and characterization of liver microsomal cytochromes P-450: Electrophoretic, spectral, catalytic, and immunochemical properties and inducibility of eight isozymes isolated from rats treated with phenobarbital or 3-naphthoflavone. Biochemistry 21: 6019–6030.

    Article  CAS  Google Scholar 

  7. Gum, J.R., and H.W. Strobel (1981) Isolation of the membrane-binding peptide of NADPH-cytochrome P-450 reductase. Characterization of the peptide and its role in the interaction of reductase with cytochrome P-450. J. Biol. Chem. 256:7478–7486.

    CAS  Google Scholar 

  8. Heinemann, F.S., and J. Ozols (1983) The complete amino acid sequence of rabbit phenobarbital-induced liver microsomal cytochrome P-450. J. Biol. Chem. 258:4195–4201.

    CAS  Google Scholar 

  9. Lau, P.P., and H.W. Strobel (1982) Multiple forms of cytochrome P-450 in liver microsomes from B~naphthoflavone pretreated rats: Separation, purification and characterization of five forms. J. Biol. Chem. 257:5257–5262.

    CAS  Google Scholar 

  10. Lipkin, M., E. Deschner, and F. Troncale (1970) Cell differentiation and the development of colonic neoplasm. Gastroenterology 59:303–309.

    CAS  Google Scholar 

  11. Lu, A.Y.H., and M.J. Coon (1968) Role of hemoprotein P-450 in fatty acid w-hydroxylation in a soluble enzyme system from liver microsomes. J. Biol. Chem. 243:1331–1332.

    CAS  Google Scholar 

  12. Lu, A.Y.H., and S.B. West (1978) Reconstituted mammalian mixed function oxidases: Requirements, specificities and other properties. Pharmacol. Ther. A. 2:337–358.

    CAS  Google Scholar 

  13. Lu, A.Y.H., K.W. Junk, and M.J, Coon (1969) Resolution of the cytochrome P-450 containing co-hydroxylation system of liver microsomes into three components. J. Biol. Chem. 244:3714–3721.

    CAS  Google Scholar 

  14. Lu, A.Y.H., R. Kuntzman, S.B. West, M. Jacobson, and A.H. Conney (1972) Reconstituted liver microsomal enzyme system that hydroxylates drugs, other foreign compounds, and endogenous substrates. 11. Role of the cytochrome P-450 and P-448 fractions in drug and steroid hydroxy lations. J. Biol. Chem. 247:1727–1734.

    CAS  Google Scholar 

  15. Lu, A.Y.H., H.W. Strobel, and M.J. Coon (1969) Hydroxylation of benzphetamine and other drugs by a solubilized form of cytochrome P-450 from liver microsomes: Lipid requirement for drug demethylation. Bio- chem. Biophys. Res. 36:545–551.

    Article  CAS  Google Scholar 

  16. Lu, A.Y.H., H.W. Strobel, and M.J. Coon (1970) Properties of a solubilized form of the cytochrome P-450 containing mixed function oxidase of liver microsomes. Mol. Pharmacol. 6:213–220.

    CAS  Google Scholar 

  17. Morohashi, K., Y. Fujii-Kuriyama, Y. Okada, K. Sogawa, T. Hirose, S. Inayama, and T. Omura (1984) Molecular cloning and nucleotide sequence of cDNA for mMA of mitochondrial cytochrome P-450 (SCC) of bovine adrenal cortex. Proc. Natl. Acad. Sei., USA 81:4647–4651.

    Article  CAS  Google Scholar 

  18. Newaz, S.N., W.F. Fang, and H.W. Strobel (1983) Metabolism of the carcinogen 1,2-dimethylhydrazine by Isolated human colon microsomes and human colon tumor cells in culture. Cancer 52:794–798.

    Article  CAS  Google Scholar 

  19. Ozols, J., F.S. Heinemann, and E.F. Johnson (1985) The complete amino acid sequence of a constitutive form of liver microsomal cytochrome P-450. J. Biol. Chem. 260:5427–5434.

    CAS  Google Scholar 

  20. Philpot, R.M., E. Arinc, and J.R. Fouts (1975) Reconstitution of the rabbit pulmonary microsomal mixed function oxidase system from solubilized components. Drug Metab. Dispos. 3:118–126.

    CAS  Google Scholar 

  21. Porter, T.D., and C.B. Kasper (1985) Coding nucleotide sequence of rat NADPH cytochrome P-450 oxidoreductase cDNA and identification of flavin-binding domains. Proc. Natl. Acad. Sci., USA 82:973–977.

    Article  CAS  Google Scholar 

  22. Sladek, N.E., and G.J. Mannering (1969) Induction of drug metabolism. I. Differences in the mechanisms by which polycyclic hydrocarbons and phenobarbital produce their inductive effects of microsomal N-demethylating systems. Mol. Pharmacol. 5:174–185.

    CAS  Google Scholar 

  23. Sladek, N.E., and G.J. Mannering (1969) Induction of drug metabolism. II. Qualitative differences in the microsomal N-demethylating systems stimulated by polycyclic hydrocarbons and by phenobarbital. Mol. Pharmacol. 5:186–199.

    CAS  Google Scholar 

  24. Stohs, S.J., R.C. Grafstrom, M.D. Burke, P.W. Moldeus, and S. Orrenuis (1976) The isolation of rat intestinal microsomes with stable cytochrome P-450 and their metabolism of benzo[a]pyrene. Arch. Biochem. Biophys. 177:105–116.

    CAS  Google Scholar 

  25. Strobel, H.W., and P.P. Lau (1982) Cytochromes P-450 in liver microsomes of rats pretreated with β-naphthoflavone. In Cytochrome P-450: Biochemistry, Biophysics and Environmental Implications, E. Hietanen, M. Laitinen, and O. Hanninen, eds. Elsevier Biomedical Press, Amsterdam, pp. 321–328.

    Google Scholar 

  26. Strobel, H.W., A.Y.H. Lu, J. Heidema, and M.J. Coon (1970) Phosphati-dylcholine requirement in the enzymatic reduction of hemoprotein P-450 and in fatty acid, hydrocarbon, and drug hydroxylation. J. Biol. Chem. 245:4851–4854.

    CAS  Google Scholar 

  27. Vermilion, J.L., D.P. Ballou, V. Massey, and M.J. Coon (1981) Separate roles for FMN and FAD in catalysis by liver microsomal NADPH-cytochrome P-450 reductase. J. Biol. Chem. 256:266–277.

    CAS  Google Scholar 

  28. Weisburger, J.H. (1971) Colon carcinogens: Their metabolism and mode of action. Cancer 28:60–70.

    Article  CAS  Google Scholar 

  29. White, R.E., and M.J. Coon (1982) Heme ligand replacement reactions of cytochrome P-450: Characterization of the bonding atom of the axial ligand trans to thiolate as oxygen. J. Biol. Chem. 257:3073–3083.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Strobel, H.W. et al. (1986). Cytochromes P-450 and the Activation and Inactivation of Mutagens and Carcinogens. In: Shankel, D.M., Hartman, P.E., Kada, T., Hollaender, A., Wilson, C.M., Kuny, G. (eds) Antimutagenesis and Anticarcinogenesis Mechanisms. Basic Life Sciences, vol 39. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5182-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5182-5_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5184-9

  • Online ISBN: 978-1-4684-5182-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics