Genetic and Chemical Factors Affecting Chemical Mutagenesis in Cultured Mammalian Cells

  • Y. Kuroda
Part of the Basic Life Sciences book series (BLSC, volume 39)


Cultured mammalian cells are useful test systems for detecting chemical mutagens in our environment. These test systems can operate at relatively moderate initial costs in the short time of about 2 weeks, resulting in savings in costs and time, compared with animal test systems. In addition, the effects of mutagens can be estimated quantitatively in cultured mammalian cell systems. Thus, the dose-rate effect of chemicals can be demonstrated along with the possible existence of repair mechanisms in mammalian cells (22, 37).


Syrian Hamster Ames Test 8AGr Mutation Chinese Hamster Cell Chemical Mutagenesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abe, S., and M. Sasaki (1977) Chromosome aberrations and sister chromatid exchanges in Chinese hamster cells exposed to various chemicals. J. Natl. Cancer Inst. 58:1635–1641.Google Scholar
  2. 2.
    Arlett, C. F., D. Turnbull, S. A. Harcourt, A. R. Lehman, and C. M. Colella (1975) A comparison of the 8-azaguanine and ouabain-resistance systems for the selection of induced mutant Chinese hamster cells. Mutat. Res. 33:261–278.CrossRefGoogle Scholar
  3. 3.
    Baker, R. M., D. M. Brunette, R. Mankovitz, L. H. Thompson, G.F. Whitmore, L. Siminovitch, and J. E. Till (1974) Ouabain-resistant mutants of mouse and hamster cells in culture. Cell 1:9–12.CrossRefGoogle Scholar
  4. 4.
    Beaudet, A. L., D. J. Roufa, and C. T. Caskey (1973) Mutations affecting the structure of hypoxanthin:purine phosphoribosyl transferase of cultured Chinese hamster cells. Proc. Natl. Acad. Sci., USA 70:320–324.CrossRefGoogle Scholar
  5. 5.
    Benedict, W. F., W. L. Wheatley, and P. A. Jones (1980) Inhibition of chemically induced morphological transformation and reversion of the transformed phenotype by ascorbic acid in C3H/10T1/2 cells. Cancer Res. 40:2796–2801.Google Scholar
  6. 6.
    Brennand, J., A. C. Chinault, D. S. Konecki, D. W. Melton, and C. T. Caskey (1982) Cloned cDNA sequences of the hypoxanthine/guanine phosphoribosyltransferase gene from a mouse neuroblastoma cell line found to have amplified genomic sequences. Proc. Natl. Acad. Sci., USA 79: 1950–1954.CrossRefGoogle Scholar
  7. 7.
    Carcinogenesis Testing Program (1978) Report on the Bioassay of Aniline Hydrochloride for Possible Carcinogenicity, U.S. Department of Health, Education and Welfare, National Institutes of Health, DHEW Publication No. 78–1385, pp. 1–53.Google Scholar
  8. 8.
    Chiu, C. W., H. L. Lee, C. Y. Wang, and G. T. Bryan (1978) Mutagenicity of some commercially available nitro compounds of Salmonella typhimurium. Mutat. Res. 58: 11–12.CrossRefGoogle Scholar
  9. 9.
    DeMars, R., and K. R. Held (1972) The spontaneous azaguanine-resistant mutants of diploid human fibroblasts. Humangenetik 16: 87–110.CrossRefGoogle Scholar
  10. 10.
    Elmore, E., and J. C. Barrett (1982) Measurement of spontaneous mutation rates at the Na+/K+ ATPase locus (ouabain resistance) of human fibroblasts using improved growth conditions. Mutat. Res. 97: 393–404.Google Scholar
  11. 11.
    Ford, D. K., and G. Yerganian (1958) Observations on the chromosomes of Chinese hamster cells in tissue culture. J. Natl. Cancer Inst. 21: 393–425.Google Scholar
  12. Gillin F. D., D. S. Roufa, A. L. Beaudet, and T. T. Caskey (1972) 8-Azaguanine resistance in mammalian cells. I. Hypoxanthin-guanine phosphoribosyltransferase. Genetics 72:239–252.Google Scholar
  13. 13.
    Guttenplan, J. B. (1977) Inhibition by L-ascorbate of bacterial mutagenesis induced by two N-nitroso compounds. Nature 268: 368–370.CrossRefGoogle Scholar
  14. 14.
    Guttenplan, J. B. (1978) Mechanisms of inhibition by ascorbate of microbial mutagenesis by N-nitroso compounds. Cancer Res. 38: 2018–2022.Google Scholar
  15. 15.
    Ishidate, Jr., M., and S. Odashima (1977) Chromosome tests with 134 compounds in Chinese hamster cells to vivo—A screening for chemical carcinogens. Mutat. Res. 48: 337–354.CrossRefGoogle Scholar
  16. 16.
    Jacobs, L., and R. DeMars (1978) Quantification of chemical mutagenesis in diploid human fibroblasts: Induction of azaguanine resistant mutants by N-methyl-N’-nitro-N-nitrosoguanidine. Mutat. Res. 53: 29–53.Google Scholar
  17. 17.
    Jones, G. E., and P. A. Sargent (1974) Mutants of cultured Chinese hamster cells deficient in adenine phosphoribosyl transferase. Cell 2: 43–54.CrossRefGoogle Scholar
  18. 18.
    Khera, K. S. (1975) Teratogenicity and dominant lethal studies on hexachlorobenzene in rats. Food Cosmet. Toxicol. 12: 471–477.Google Scholar
  19. 19.
    Kuroda, Y., (1979) Mutagenic activity of tryptophan pyrolysis products on embryonic human diploid cells in culture. Ann. Rep. Natl. Inst. Genet. Japan 29:39.Google Scholar
  20. 20.
    Kuroda, Y. (1980) Dose-rate effects of Trp-P-1 on survival and mutation induction in cultured human diploid cells. Ann. Rep. Natl. Inst. Genet. Japan 30: 47–48.Google Scholar
  21. 21.
    Kuroda, Y. (1981) Mutagenic activity of Trp-P-2 and Glu-P-1 on embryonic human diploid cells in culture. Ann. Rep. Natl. Inst. Genet. Japan 31: 45–46.Google Scholar
  22. 22.
    Kuroda, Y. (1984) Dose-rate effects of chemicals on mutation induction in mammalian cells in culture. In Problems of Threshold in Chemical Mutagenesis, Y. Tazima, S. Kondo, and Y. Kuroda, eds. Environmental Mutagen Society Japan, Mishima, Shizuoka, pp. 99–108.Google Scholar
  23. 23.
    Kuroda, Y., and M. Asakura (1982) Co-mutagenic activity of non-mutagens in cultured Chinese hamster cells. Ann. Rep. Natl. Inst. Genet. Japan 32:52.Google Scholar
  24. 24.
    Kuroda, Y., A. Yokoiyama, and T. Kada (1985) Assays for the induction of mutations to 6-thioguanine resistance in Chinese hamster V79 cells in culture. In Problems in Mutation Research, Vol. 5, J. Ashby and F. J. de Serres et al., eds. World Health Organization, Elsevier Science Publishers, Anisterdam, Oxford, New York, pp. 537–545.Google Scholar
  25. 25.
    Lo, L. W., and H. F. Stich (1978) The use of short-term tests to measure the preventive action of reducing agents on formation and activation of carcinogenic nitroso compounds. Mutat. Res. 57: 57–67.Google Scholar
  26. 26.
    MacCann, J., E. Choi, E. Yamasaki, and B. N. Ames (1975) Detection of carcinogens as mutagens in the Salmonella/microsome test: Assay of 300 chemicals. Proc. Natl. Acad. Sci., USA 72: 5135–5139.CrossRefGoogle Scholar
  27. 27.
    Mankovitz, R., M. Buchwald, and R. M. Baker (1974) Isolation of ouabain-resistant human diploid fibroblasts. Cell 3: 221–226.CrossRefGoogle Scholar
  28. 28.
    Mirvish, S. S., A. F. Pelfrene, H. Garcia, and P. Shubik (1976) Effect of sodium ascorbate on tumor induction in rats treated with morpholine and sodium nitrite, and with nitrosomorphiline. Cancer Lett. 2:109–114.CrossRefGoogle Scholar
  29. 29.
    Pienta, R. J., J. A. Poiley, and W. B. Lebherz III (1977) Morphological transformation of early passage golden Syrian hamster embryo cells derived from cryopreserved primary cultures as a reliable to vitro bio-assay for identifying diverse carcinogens. Intl. J. Cancer 19:642–655.CrossRefGoogle Scholar
  30. 30.
    Rosin, M. P., and H. F. Stich (1979) Assessment of the use of the Salmonella mutagenesis assay to determine the influence of antioxidants on carcinogen-induced mutagenesis. Intl. J. Cancer 23: 722–727.CrossRefGoogle Scholar
  31. 31.
    Schlegel, J. R. (1975) Proposed uses of ascorbic acid in prevention of bladder carcinoma. Ann. N.Y. Acad. Sci. 258:432–437.CrossRefGoogle Scholar
  32. 32.
    Sharp, J. D., N. E. Capecchi, and M. R. Capecchi (1973) Altered enzjnnes in drug-resistant variants of mammalian tissue culture cells. Proc. Natl. Acad. Sci., USA 70:3145–3149.CrossRefGoogle Scholar
  33. 33.
    Slaga, T. J., and W. M. Bracken (1977) The effects of antioxidants on skin tumor inhibition and aryl hydrocarbon hydroxylase. Cancer Res. 37:1631–1635.Google Scholar
  34. 34.
    Stich, H. F., J. Karim, J. Koropatnick, and L. Lo (1976) Mutagenic action of ascorbic acid. Nature 26:722–724.CrossRefGoogle Scholar
  35. 35.
    Styles, J. A. (1978) Mammalian cell transformation vitro. Brit. J. Cancer 37:931–936.CrossRefGoogle Scholar
  36. 36.
    Sugimura, T., T. Kawachi, M. Nagao, T. Yahagi, Y. Seino, T. Okamoto, K. Shudo, T. Kosugi, K. Tsuji, K. Wakabayashi, T. Litaka, and A. Itai (1977) Mutagenic principle(s) in tryptophan and phenylalanine pyrolysis products. Proc. Japan Acad. 53:58–61.CrossRefGoogle Scholar
  37. 37.
    Sugiura, K., M. Goto, and Y. Kuroda (1978) Dose-rate effects of ethyl methanesulfonate on survival and mutation induction in cultured Chinese hamster cells. Mutat. Res. 51:99–108.CrossRefGoogle Scholar
  38. 38.
    Yamamoto, T., K. Tsuji, T. Kosuge, T. Okamoto, K. Shudo, K. Takeda, Y. Litaka, K. Yamaguchi, Y. Seino, T. Yahagi, A. Nagao, and T. Sugimura (1978) Isolation and structure determination of mutagenic substances in L-glutamic acid pyrolysate. Proc. Japan Acad. 54B: 248–250.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Y. Kuroda
    • 1
  1. 1.Laboratory of PhenogeneticsNational Institute of GeneticsMishima, Shizuoka 411Japan

Personalised recommendations