Genetic Analyses of the Roles of UmuDC and MucAB in Mutagenesis

  • Lorraine Marsh
  • Lori A. Dodson
  • Christine Dykstra
  • David Sobell
  • Graham C. Walker
Part of the Basic Life Sciences book series (BLSC, volume 39)


Mutagenesis by some alkylating agents and base analogs in Escherichia coli appears to involve a simple mispairing during replication. In contrast, mutagenesis by ultraviolet (UV) light and many chemicals in E. coli requires the participation of an inducible process that is dependent on the products of the umuD, umuC, and recA genes. The requirement for induced cellular functions for UV mutagenesis was first noted by Weigle (37), who found that UV was not mutagenic for bacteriophage lambda unless the bacteria had been preirradiated with UV. The induction of this process was later shown by Defais et al. (7) to be blocked by recA(Def) or lexA(Ind) mutations. The fact that the same recA(Def) and lexA(Ind) mutations rendered E. coli nonmutable by UV and many chemicals (16,24,39) indicated that mutageneses of the bacterial chromosome required the participation of the same recA + lexA + -controlled process, and the inducibility of the system was demonstrated by subsequent physiological experiments (40).


RecA Protein Chemical Mutagenesis MucA Protein LexA Protein LexA Binding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bagg, A., C.J. Kenyon, and G.C. Walker (1981) Inducibility of a gene product required for UV and chemical mutagenesis in Escherichia coli. Proc. Natl. Acad. Sci., USA 78:5749–5753.CrossRefGoogle Scholar
  2. 2.
    Baker, T.A., A.D. Grossman, and C.A. Gross (1984) A gene regulating the heat shock response in Escherichia coli also affects proteolysis. Proc. Natl, Acad. Sci., USA 81:6779–6783.CrossRefGoogle Scholar
  3. 3.
    Blanco, M., G. Herrera, P. Collado, J. Rebollo, and L.M. Botella (1982) Influence of RecA protein on induced mutagenesis, Biochimie 64:633–636.CrossRefGoogle Scholar
  4. 4.
    Bridges, B.A., and R. Woodgate (1984) Mutagenic repair in Escherichia coli. X. The umuC gene product may be required for replication past pyrimidine dimers but not for the coding error in UV mutagenesis. Mol. Gen. Genet. 196:364–366.Google Scholar
  5. 5.
    Brown, A.M.C., and N.S. Willetts (1981) A physical and genetic map of the Inc N plasmid R46. Plasmid 5:188–201.CrossRefGoogle Scholar
  6. 6.
    Charette, M.F., G.W. Henderson, and A. Markovitz (1981) ATP hydrolysis-dependent protease activity of the lon(capR) protein of Escherich- U coli K-12. Proc. Natl. Acad. Sci., USA 78:4728–4732.CrossRefGoogle Scholar
  7. 7.
    Defais, M., P. Fauquet, M. Radman, and M. Errera (1971) Ultraviolet reactivation and ultraviolet mutagenesis of lambda in different genetic systems. Virology 43:495–503.CrossRefGoogle Scholar
  8. 8.
    Doubleday, O.P., M.H.L. Green, and B.A. Bridges (1977) Spontaneous and UV-induced mutation in Escherichia coli: Interaction between plasmid and tif-1 mutator effects. J. Gen. Microbiol. 101:163–166.Google Scholar
  9. 9.
    Elledge, S.J., and G.C. Walker (1983) Proteins required for ultraviolet light and chemical mutagenesis: Identification of the products of the umuC locus of Escherichia coli. J. Mol. Biol. 164:175–192.CrossRefGoogle Scholar
  10. 10.
    Elledge, S.J., and G.C. Walker (1983) The muc genes of pKM1O1 are induced by DNA damage. J. Bacteriol. 155:1306–1315.Google Scholar
  11. 11.
    Ennis, D.G., B. Fisher, S. Edmiston, and D.W. Mount (1985) Dual role for Escherichia coli RecA protein in SOS mutagenesis. Proc. Natl. Acad. Sei., USA 82:3325–3329.CrossRefGoogle Scholar
  12. 12.
    Gimble, F.S., and R.T. Sauer (1985) Mutations in bacteriophage lambda repressor that prevent RecA-mediated cleavage. J. Bacteriol. 162:147–154.Google Scholar
  13. 13.
    Glickman, B. (1983) Mutational specificity of UV light in E. coli: Influence of excision repair and the mutator plasmid pKM1O1. In Induced Mutagenesis, C.W. Lawrence, ed. Plenum Press, New York, pp. 135–170.Google Scholar
  14. 14.
    Kato, T., and Y. Shinoura (1977) Isolation and characterization of mutants of Escherichia coli deficient in induction of mutations by ultraviolet light. Mol. Gen. Genet. 156:121–131.Google Scholar
  15. 15.
    Kitagawa, Y., E. Akaboshi, H. Shinagawa, T. Horii, H. Ogawa, and T. Kato (1985) Structural analysis of the umu operon required for inducible mutagenesis in Escherichia coli. Proc. Natl. Acad. Sei., USA 82: 4336–4340.CrossRefGoogle Scholar
  16. 16.
    Kondo, S. (1969) Mutagenicity versus radiosensitivity in Escherichia coli. In Proceedings of the Xllth International Congress of Genetics, Vol. II, pp. 126–127.Google Scholar
  17. 17.
    Langer, P.J., and G.C. Walker (1981) Restriction endonuclease cleavage map of pKM1O1: Relationship to parental plasmid R46. Mol. Gen. Genet. 182:268–272.CrossRefGoogle Scholar
  18. 18.
    Lawrence, C.W. (1982) Mutagenesis in Saccharomyces cerevisiae. Adv. Genet. 21:173–254.CrossRefGoogle Scholar
  19. 19.
    Little, J.W., and D.W. Mount (1982) The SOS regulatory system of Escherichia coli. Cell 29:11–22.CrossRefGoogle Scholar
  20. 20.
    Marsh, L., and G.C. Walker (1985) Cold sensitivity induced by overproduction of UmuDC in Escherichia coli. J. Bacteriol. 162:155–161.Google Scholar
  21. 21.
    Marsh, L., and G.C. Walker (1985) Mutagenic DNA repair in bacteria: The role of UmuDC and MucAB. In Mechanisms of DNA Damage and Repair, M.G. Simic, L. Grossman, and A.D. Upton, eds. Plenum Press, New York (in press).Google Scholar
  22. 22.
    McCann, J., and B.N. Ames (1976) Detection of carcinogens as mutagens in the Salmonella/microsome test:assay of 300 chemicals: Discussion. Proc. Natl. Acad. Scl., USA 73:950–954.CrossRefGoogle Scholar
  23. 23.
    McCann, J., N.E. Spingarn, J. Kobori, and B.N. Ames (1975) Detection of carcinogens as mutagens: Bacterial tester strains with R factor Plasmids. Proc. Natl. Acad. Sci., USA 72:979–983.CrossRefGoogle Scholar
  24. 24.
    Miura, A., and J. Tomizawa (1968) Studies on radiation-sensitive mutants of E. coli. III. Participation of the Ree system in induction of mutation by ultraviolet irradiation. Mol. Gen. Genet. 103:1–10.CrossRefGoogle Scholar
  25. 25.
    Mortelmans, K.E., and B.A.D. Stocker (1979) Segregation of the mutator property of plasmid R46 from its ultraviolet-protecting property. Mol. Gen. Genet. 167:317–328.CrossRefGoogle Scholar
  26. 26.
    Perry, K.L., and G.G. Walker (1982) Identification of plasmid (pKM-101)-coded proteins involved in mutagenesis and UV resistance. Nature (London) 300:278–281.CrossRefGoogle Scholar
  27. 27.
    Perry, K.L., S.J. Elledge, B.B. Mitchell, L. Marsh, and G.G. Walker (1985) umuDG and mucAB operons whose products are required for UV light- and chemical-induced mutagenesis: UmuD, MucA, and LexA proteins share homology. Proc. Natl. Acad. Sci., USA 82:4331–4335.CrossRefGoogle Scholar
  28. 28.
    Radman, M. (1975) SOS repair hypothesis: Phenomenology of an inducible DNA repair which is accompanied by mutagenesis. In Molecular Mechanisms for Repair of DNA, Part A, P. Hanawalt and R.B. Setlow, eds. Plenum Press, New York, pp. 355–367.CrossRefGoogle Scholar
  29. 29.
    Sauer, R.T., R.R. Yocum, R.F. Doolittle, M. Lewis, and G.G. Pabo (1982) Homology among DNA-binding proteins suggests use of a conserved super-secondary structure. Nature (Loudon) 298:447–451.CrossRefGoogle Scholar
  30. 30.
    Shanabruch, W.G., and G.G. Walker (1980) Localization of the plasmid (pKM101) gene(s) involved in recA lexA -dependent mutagenesis. Mol. Gen. Genet. 179:289–297.CrossRefGoogle Scholar
  31. 31.
    Steinborn, G. (1978) Uvm mutants of Escherichia coli K12 deficient in UV mutagenesis. I. Isolation of uvm mutants and their phenotypical characterization in DNA repair and mutagenesis. Mol. Gen. Genet. 165: 87–93.CrossRefGoogle Scholar
  32. 32.
    Shinagawa, H., T. Kato, T. Ise, K. Makino, and A. Nakata (1983) Cloning and characterization of the umu operon responsible for inducible mutagenesis in Escherichia coli. Gene 23:167–174.CrossRefGoogle Scholar
  33. 33.
    Walker, G.G. (1977) Plasmid (pKM101)-mediated enhancement of repair and mutagenesis: Dependence on chromosomal genes in Escherichia coli K-12. Mol. Gen. Genet. 152:93–103.CrossRefGoogle Scholar
  34. 34.
    Walker, G.G. (1984) Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiol. Rev. 48:60–93.Google Scholar
  35. 35.
    Walker, G.G. (1985) Inducible DNA repair systems. Ann. Rev. Biochem. 54:425–457.CrossRefGoogle Scholar
  36. 36.
    Walker, G.G., and P.P. Dobson (1979) Mutagenesis and repair deficiencies of Escherichia coli umuG mutants are suppressed by the plasmid pmOl. Mol. Gen. Genet. 172:17–24.CrossRefGoogle Scholar
  37. 37.
    Weigle, J.J. (1953) Induction of mutation in a bacterial virus. Proc. Natl. Acad. Sci., USA 39:628–636.CrossRefGoogle Scholar
  38. 38.
    Winans, S.G., and G.G. Walker (1985) Conjugal transfer system of the IncN plasmid pKM101. J. Bacteriol. 161:402–410.Google Scholar
  39. 39.
    Witkin, E.M. (1969) Ultraviolet-induced mutation and DNA repair. Ann. Rev. Microbiol. 23:487–514.CrossRefGoogle Scholar
  40. 40.
    Witkin, E.M. (1974) Thermal enhancement of ultraviolet mutability in a tif-1 uvrA derivative of Escherichia coli B/r: Evidence that ultraviolet mutagenesis depends upon an inducible function. Proc. Natl. Acad. Sci., USA 71:1930–1934.CrossRefGoogle Scholar
  41. 41.
    Witkin, E.M. (1976) Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli. Bacteriol. Rev. 40:869–907.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Lorraine Marsh
    • 1
  • Lori A. Dodson
    • 1
  • Christine Dykstra
    • 1
  • David Sobell
    • 1
  • Graham C. Walker
    • 1
  1. 1.Biology DepartmentMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations