Nucleotide Excision Repair Genes from the Yeast Saccharomyces Cerevisiae

  • Errol C. Friedberg
  • Reinhard Fleer
  • Louie Naumovski
  • Charles M. Nicolet
  • Gordon W. Robinson
  • William A. Weiss
  • Elizabeth Yang
Part of the Basic Life Sciences book series (BLSC, volume 39)


The genetics of nucleotide excision repair in the yeast Saccharomyces cerevisiae is complex, apparently requiring at least 10 genes. We have isolated 5 of these genes (designated RAD1, RAD2, RAD3, RAD4, and RAD1O) by molecular cloning and plan to overexpress them in order to generate proteins for biochemical study. We have sequenced four of these five genes and have noted regions of homology with other proteins in the predicted amino acid sequence of some of them. In particular, there is striking homology between Rad3 protein and a number of prokaryotic and eukaryotic proteins that bind nucleotides and hydrolyze ATP or GTP. Mutations in this region of the RAD3 gene render cells defective in the nucleotide excision repair function. In addition to its role in nucleotide excision repair, the RAD3 gene is essential for the viability of haploid cells in the absence of DNA damage. The nature of the essential function is unknown. The RAD1 and RAD3 genes are not inducible by DNA damaging agents. However, exposure of cells to UV radiation, 4-nitroquinoline 1-oxide, or γ radiation results in 4- to 6-fold enhanced expression of the RAD2 gene.


Excision Repair Nucleotide Excision Repair Amino Acid Sequence Homology Nucleotide Excision Repair Gene Excision Repair Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arther, H.M., D. Bramhill, P.B. Eastlake, and P.T. Emmerson (1982) Cloning of the uvrD gene of E. coli and identification of the product. Gene 19:285–295.CrossRefGoogle Scholar
  2. 2.
    Bennetzen, J.L., and B.D. Hall (1982) Codon selection in yeast. J Biol. Chem. 257:3026–3031.Google Scholar
  3. 3.
    Brand, A.H., L. Breeden, J, Abraham, R. Sternglanz, and K. Nasmyth (1985) Characterization of a “silencer” in yeast: A DNA sequence with properties opposite to those of a transcriptional enhancer. Cell 41: 41–48.CrossRefGoogle Scholar
  4. 4.
    Bridges, B.A., R.P. Mottershead, and A. Lehmann (1976) Error-prone DNA repair in Escherichia coli. IV. Excision repair and radiation-induced mutation in a dnaB strain. Biol. Zentralblat. 95:393–403.Google Scholar
  5. 5.
    Caron, P.R., S.R. Kushner, and L. Grossman (1985) Involvement of heli- case II (uvrD gene product) and DNA polymerase I in excision mediated by the uvrABC protein complex. Proc. Natl. Acad. Sei., USA 82:4925–4929.CrossRefGoogle Scholar
  6. 6.
    Finch, P.W., and P.T. Emmerson (1984) The nucleotide sequence of the uvrD gene of E. coli. Nucl. Acids Res. 12:5789–5799.CrossRefGoogle Scholar
  7. 7.
    Friedberg, E.G. (1985) DNA Repair, W.H. Freeman and Co., New York.Google Scholar
  8. 8.
    Friedberg, E.G. (1985) Nucleotide excision repair of DNA in eukaryotes: Comparisons between human cells and yeast. Cancer Surveys (in press).Google Scholar
  9. 9.
    Herskowitz, I., and Y. Oshima (1981) Control of cell type in Saccharomyces cerevisiae. In The Molecular Biology of the Yeast Saccharomyces, J.N. Strathern, E.W. Jones, and J.R. Broach, eds. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 181–209.Google Scholar
  10. 10.
    Higgins, C.F., I.D. Hiles, K. Whalley, and D.J. Jamieson (1985) Nucleotide binding by membrane components of bacterial periplasmic binding protein-dependent transport systems. EMBO J. 4:1033–1040.Google Scholar
  11. 11.
    Higgins, D.R., S. Prakash, P. Reynolds, R. Polakowska, S. Weber, and L. Prakash (1983) Isolation and characterization of the RAD3 gene of Saccharomyces cerevisiae and inviability of rad3 deletion mutants. Proc. Natl. Acad. Sei., USA 80:5680–5684.CrossRefGoogle Scholar
  12. 12.
    Husain, I., B. Van Houten, D.C. Thomas, M. Abdul-Monem, and A. Sancar (1985) Effect of DNA polymerase I and DNA helicase II on the turnoverr rate of UvrABC excision nuclease. Proc. Natl. Acad. Sci., USA (in press).Google Scholar
  13. 13.
    Joyce, C.M., W.S. Kelley, and N.D.F. Grindley (1982) Nucleotide sequence of the Escherichia coli polA gene and primary structure of DNA polymerase I. J. Biol. Ghem. 257:1958–1964.Google Scholar
  14. 14.
    Kumara, K., M. Sekiguchi, A.-L. Steinum, and E. Seeberg (1985) Stimulation of the UvrABC enzjmie-catalyzed reactions by the UvrD protein (DNA helicase II). Nucl. Acids Res. 13:1483–1492.CrossRefGoogle Scholar
  15. 15.
    Maples, V.F., and S.R. Kushner (1982) DNA repair in Escherichia coli: Identification of the uvrD gene product. Proc. Natl. Acad. Sci., USA 79:5616–5620.CrossRefGoogle Scholar
  16. 16.
    McClanahan, T., and K. McEntee (1984) Specific transcripts are elevat- ed in Saccharomyces cerevisiae in response to DNA damage. Mol. Cell. Biol. 4:2356–2363.Google Scholar
  17. 17.
    Nagpal, M.L., D.R. Higgins, and S. Prakash (1985) Expression of the RADl and RAD3 genes of Saccharomyces cerevisiae is not affected by DNA damage or during the cell division cycle. Mol. Gen. Genet. 199:59–63.CrossRefGoogle Scholar
  18. 18.
    Nakayama, N., N. Arai, M.W. Bond, Y. Kaziro, and K. Arai (1984) Nucleotide sequence of dnaB and primary structure of the dnaB protein from Escherichia coli. J. Biol. Chem. 259:97–101.Google Scholar
  19. 19.
    Naumovski, L., and E.G. Friedberg (1982) Molecular cloning of eukaryotic genes required for excision repair of UV-irradiated DNA: Isolation and partial characterization of the RAD3 gene of Saccharomyces cerevisiae. J. Bacteriol. 152:323–331.Google Scholar
  20. 20.
    Naumovski, L., and E.G. Friedberg (1983) A DNA repair gene required for the incision of damaged DNA is essential for viability in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci., USA 80:5680–5684.CrossRefGoogle Scholar
  21. 21.
    Naumovski, L., and E.G. Friedberg (1984) Saccharomyces cerevisiae RAD2 gene: Isolation, subcloning and partial characterization. Mol. Gell. Biol. 4:290–295.Google Scholar
  22. 22.
    Naumovski, L., G. Ghu, P. Berg, and E.G. Friedberg (1985) RAD3 gene of Saccharomyces cerevisiae: Nucleotide sequence of wild-type and mutant alleles, transcript mapping and aspects of gene regulation. Mol. Gell. Biol. 5:17–26.Google Scholar
  23. 23.
    Nicolet, G.M., J.M. Ghenevert, and E.G. Friedberg (1985) The RAD2 gene of Saccharomyces cerevisiae: Nucleotide sequence and transcript mapping. Gene 36:225–334.CrossRefGoogle Scholar
  24. 24.
    Oeda, K., T. Horiuchi, and M. Sekiguchi (1982) The uvrD gene of E. coli encodes a DNA-dependent ATPase. Nature 298:98–100.CrossRefGoogle Scholar
  25. 25.
    Oishi, M., R.M. Irbe, and L.M.E. Morin (1981) Molecular mechanism for the induction of “SOS” functions. Prog. Nucl. Acid Res. Mol. Biol. 26:281–301.CrossRefGoogle Scholar
  26. 26.
    Pabo, G.O., and R.T. Sauer (1984) Protein-DNA recognition. Ann. Rev. Bio chem. 53:293–321.CrossRefGoogle Scholar
  27. 27.
    Peterson, T.A., L. Prakash, S. Prakash, M.A. Osley, and S.I. Reed (1985) Regulation of GDG9, the Saccharomyces cerevisiae gene that encodes DNA ligase. Mol. Gell. Biol. 5:226–235.Google Scholar
  28. 28.
    Ruby, S., and J.W. Szostak (1985) Specific Saccharomyces cerevisiae genes are expressed in response to DNA-damaging agents. Mol. Gell. Biol. 5:75–84.Google Scholar
  29. 29.
    Sancar, G.B., A. Sancar, and H. Rupp (1984) Sequences of the E. coli uvrG genes and protein. Nucl. Acids Res. 12:4593–4608.CrossRefGoogle Scholar
  30. 30.
    Seeberg, E., and A.-L. Steinum (1982) Purification and properties of the uvrA protein from Escherichia coli. Proc. Natl. Acad. Sci., USA 79:988–992.CrossRefGoogle Scholar
  31. 31.
    Walker, G. (1984) Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Bacteriol. Rev. 48:60–93.Google Scholar
  32. 32.
    Weiss, W.A., and E.G. Friedberg (1985) Molecular cloning and characterization of the yeast RADIO gene and expression of RADIO protein in E. coli. EMBO J. 4:1575–1582.Google Scholar
  33. 33.
    Winston, F., D.T. Ghaleff, B. Valent, and G.R. Fink (1984) Mutations affecting Ty-mediated expression of the HIS4 gene of Saccharomyces cerevisiae. Genetics 107:179–197.Google Scholar
  34. 34.
    Yang, E., and E.G. Friedberg (1984) Molecular cloning and nucleotide sequence analysis of the Saccharomyces cerevisiae RADl gene. Mol. Gell. Biol. 4:2161–2169.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Errol C. Friedberg
    • 1
  • Reinhard Fleer
    • 1
  • Louie Naumovski
    • 1
  • Charles M. Nicolet
    • 1
  • Gordon W. Robinson
    • 1
  • William A. Weiss
    • 1
  • Elizabeth Yang
    • 1
  1. 1.Department of PathologyStanford University School of MedicineStanfordUSA

Personalised recommendations