Advertisement

Alkylation and Oxidative Damages to DNA: Constitutive and Inducible Repair Systems

  • Bruce Demple
  • Yasmin Daikh
  • Jean Greenberg
  • Arlen Johnson
Part of the Basic Life Sciences book series (BLSC, volume 39)

Abstract

Simple chemical agents that damage DNA are of both environmental and intracellular origin. Among these are carcinogen-related compounds, including simple alkylating agents (e.g., S-adenosyl methionine) and simple oxidizing agents (e.g., oxygen radicals). Living cells have therefore to counter the potentially mutagenic and carcinogenic effects of physiological compounds on a daily basis, and not just when they encounter an occasional environmental challenge.

Keywords

Adaptive Response Alkylating Agent Methyl Transferase Thymine Glycol Inducible Repair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ames, B.N, (1983) Dietary carcinogens and anticarcinogens. Oxygen radicals and degenerative diseases. Science 221:1256–1264.CrossRefGoogle Scholar
  2. 2.
    Apontoweil, P., and W. Berends (1975) Isolation and initial characterization of glutathione-deficient mutants of Escherichia coli K12. Biochim. Biophys. Acta 399:10–22.CrossRefGoogle Scholar
  3. 3.
    Breimer, L.H. (1983) Urea-DNA glycosylase in mammalian cells. Biochemistry 22:4192–4197.CrossRefGoogle Scholar
  4. 4.
    Breimer, L.H., and T. Lindahl (1985) Th3miine lesions produced by ionizing radiation in double-stranded DNA. Biochemistry 24:4018–4022.CrossRefGoogle Scholar
  5. 5.
    Cairns, J. (1980) Efficiency of the adaptive response of Escherichia coli to alkylating agents. Nature 286:176–178.CrossRefGoogle Scholar
  6. 6.
    Cairns, J. (1981) The origin of human cancers. Nature 289:353–357.CrossRefGoogle Scholar
  7. 7.
    Cerda-Olmedo, E., P.C. Hanawalt, and N. Guerola (1968) Mutagenesis of the replication point by nitrosoguanidine: Map and pattern of replication of the E. coli chromosome. J. Mol. Biol. 33:705–719.CrossRefGoogle Scholar
  8. 8.
    Christman, M.F., R.W. Morgan, F. Jacobson, and B.N. Ames (1985) Positive control of a regulon for defenses against oxidative stress and some heat-shock proteins in Salmonella typhimurium. Cell 41:753–762.CrossRefGoogle Scholar
  9. 9.
    Cunningham, R.P., and B. Weiss (1985) Endonuclease III (nth) mutants of Escherichia coli. Proc. Natl. Acad. Sci., USA 82:474–478.CrossRefGoogle Scholar
  10. 10.
    Demple, B. (1984) Repair of oxidative DNA damage: Constitutive and inducible systems in E. coli. In Oxidative Damage and Related Enzymes (Life Chemistry Reports, Suppl. 2), G. Rotilio and J.V. Bannister, eds. Harwood Academic Publishers, London, pp. 422–429.Google Scholar
  11. 11.
    Demple, B., and J. Halbrook (1983) Inducible repair of oxidative DNA damage in Escherichia coli. Nature 304:466–468.CrossRefGoogle Scholar
  12. 12.
    Demple, B., and P. Karran (1983) Death of an enzyme: Suicide repair of DNA. Trends in Biochem. Sci. 8:137–139.CrossRefGoogle Scholar
  13. 12a.
    Demple, B., and S. Linn (1980) DNA N-glycosylases and UV repair. Nature 287:203–208.CrossRefGoogle Scholar
  14. 13.
    Demple, B., J. Halbrook, and S. Linn (1983) Escherichia colixth mutants are hypersensitive to hydrogen peroxide. J. Bacteriol. 153: 1079–1082.Google Scholar
  15. 14.
    Demple, B., A. Jacobsson, M. Olsson, P. Robins, and T. Lindahl (1982) Repair of alkylated DNA in Escherichia coli. Physical properties of methylguanine-DNA methyltransferase. J. Biol. Chem. 257:13776–13780.Google Scholar
  16. 15.
    Demple, B., B. Sedgwick, P. Robins, N. Totty, M.D. Waterfield, and T. Lindahl (1985) Active site and complete sequence of the suicidal meth-yltransf erase that counters alkylation mutagenesis. Proc. Natl. Acad. Sci., USA 82:2688–2692.CrossRefGoogle Scholar
  17. 16.
    Evensen, G., and E. Seeberg (1982) Adaptation to alkylation resistance involves induction of a DNA glycosylase. Nature 296:773–775.CrossRefGoogle Scholar
  18. 17.
    Farr, S.B., D.O. Natvig, and T. Kogoma (1985) Toxicity and mutagenicity of plumbagin and the induction of a possible new DNA repair pathway in Escherichia coli. J. Bacteriol. 164:1309–1316.Google Scholar
  19. 17a.
    Hall, J., and R Saffhill (1983) The incorporation of -methyldeoxy- guanosine and -methyldeoxythymidine monophosphates into DNA by DNA polymerases I and a. Nucl. Acids Res. 11:4185–4193.CrossRefGoogle Scholar
  20. 18.
    Henner, W.D., S.M. Grunberg, and W.A. Haseltine (1983) Enzyme action at 3’ termini of ionizing radiation-induced DNA strand breaks. J. Biol, Chem. 258:15198–15205.Google Scholar
  21. 19.
    Hutchinson, F. (1985) Chemical changes induced in DNA by ionizing radiation. Prog. Nucl. Acids Mol. Biol. 32:115–154.CrossRefGoogle Scholar
  22. 20.
    Jeggo, P. (1979) Isolation and characterization of Escherichia coli Kl2 mutants unable to induce the adaptive response to simple alkylating agents. J. Bacteriol. 139:783–791.Google Scholar
  23. 21.
    Jeggo, P., M. Defais, L. Samson, and P. Schendel (1977) An adaptive response of E. coli to low levels of alkylating agent: Comparison with previously characterized DNA repair pathways. Mol. Gen. Genet. 157:1–9.CrossRefGoogle Scholar
  24. 22.
    Karran, P., T. Hjelmgren, and T. Lindahl (1982) Induction of a DNA glycosylase for N-methylated purines is part of the adaptive response to alkylating agents. Nature 296:770–773.CrossRefGoogle Scholar
  25. 23.
    Krasin, F., and F. Hutchinson (1977) Repair of DNA double-strand breaks in Escherichia coli, which requires recA function and the presence of a duplicate genome. J. Mol. Biol. 116:81–98.CrossRefGoogle Scholar
  26. 24.
    Krueger, J.H., and G.C. Walker (1984) groEL and dnaK genes of Escherichia coli are induced by UV irradiation and nalidixic acid in an htpR -dependent fashion. Proc. Natl. Acad. Sei., USA 81:1499–1503.CrossRefGoogle Scholar
  27. 25.
    LeMotte, P., and G.C. Walker (1985) Induction and autoregulation of ada, a positively acting element regulating the response of Escherichcoli K12 to methylating agents. J. Bacteriol. 161:888–895.Google Scholar
  28. 26.
    Lindahl, T., B. Demple, and P. Robins (1982) Suicide inactivation of oli -methylguanine-DNA methyltransferase. EMBO J. 1:1359–1363.Google Scholar
  29. 26a.
    Loechler, L., C.L. Green, and J.M. Essigmann (1984) In vivo mutagen- esis by methylguanine built into a unique site in a viral genome. Proc. Natl. Acad. Sei., USA 81:6271–6275.CrossRefGoogle Scholar
  30. 27.
    Loewen, P.C. (1984) Isolation of catalase-deficient Escherichia coli mutants and genetic mapping of katE, a locus that affects catalase activity. J. Bacteriol. 157:622–626.Google Scholar
  31. 28.
    Loewen, P.C., and B.L. Triggs (1984) Genetic mapping of katF, a locus that with katE affects the synthesis of a second catalase species in E. coli. J. Bacteriol. 160:668–675.Google Scholar
  32. 29.
    Loewen, P.C., B.L. Triggs, C.S. George, and B.E. Hrabarchuk (1985) Genetic mapping of katG, a locus that affects synthesis of the bifunc- tional catalase-peroxidase I in Escherichia coli. J. Bacteriol. 162: 661–667.Google Scholar
  33. 30.
    McCarthy, J.G., B.V. Eddington, and P.F. Schendel (1983) Inducible repair of phosphotriesters in Escherichia coli. Proc. Natl. Acad. Sei., USA 80:7380–7384.CrossRefGoogle Scholar
  34. 31.
    McCarthy, T.V., P. Karran, and T. Lindahl (1984) Inducible repair of 0-alkylated DNA pyrimidines in Escherichia coli. EMBO J. 3:545–550.Google Scholar
  35. 32.
    McCarthy, T.V., and T. Lindahl (1985) Methyl phosphotriesters in DNA are repaired by the Ada regulatory protein of E. coli. Nucl. Acids Res. 13:2683–2698.CrossRefGoogle Scholar
  36. 33.
    Meister, A., and M.E. Anderson (1983) Glutathione. Ann. Rev. Biochem. 52:711–760.CrossRefGoogle Scholar
  37. 34.
    Mitra, S., B.C. Pal, and R.S. Foote (1982) Methylguanine-DNA methyltransferase in wild-type and ada mutants of E. coli. J. Bacteriol. 152:534–537.Google Scholar
  38. 35.
    Morse, M.L., and R.H. Dahl (1978) Cellular glutathione is a key to the oxygen effect in radiation damage. Nature 271:660–662.CrossRefGoogle Scholar
  39. 36.
    Muller, H.J. (1927) Artificial transmutation of the gene. Science 66: 84–87.CrossRefGoogle Scholar
  40. 37.
    Nakabeppu, Y., H. Kondo, S. Kawabata, S. Iwanaga, and M. Sekiguchi (1985) Purification and stricture of the intact Ada regulatory protein of Escherichia, coli Kl2, 0 -methylguanine-DNA methyltransferase. J. Biol. Chem. 260:7281–7288.Google Scholar
  41. 38.
    Olsson, M., and T. Lindahl (1980) Repair of alkylated DNA in Escherichia coli. Methyl group transfer from -methylguanine to a protein cysteine residue. J. Biol. Chem. 255:10569–10571.Google Scholar
  42. 39.
    Samson, L., and J. Cairns (1977) A new pathway for DNA repair in Es-cherichia coli. Nature 267:281–283.CrossRefGoogle Scholar
  43. 40.
    Sedgwick, B. (1982) Genetic mapping of ada and adc mutations affecting the adaptive response of Escherichia coli to alkylating agents. J. Bacteriol. 150:984–988.Google Scholar
  44. 41.
    Sedgwick, B. (1983) Molecular cloning of a gene which regulates the adaptive response to alkylating agents in E. coli. Mol. Gen. Genet. 191:466–472.CrossRefGoogle Scholar
  45. 42.
    Sedgwick, B., and P. Robins (1980) Isolation of mutants of Escherichia coli with increased resistance to alkylating agents: Mutants deficient in thiols and mutants constitutive for the adaptive response. Mol. Gen. Genet. 180:85–90.CrossRefGoogle Scholar
  46. 43.
    Singer, B., and J.T. Kusmierek (1982) Chemical mutagenesis. Ann. Rev. Biochem. 51:655–693.CrossRefGoogle Scholar
  47. 44.
    Teo, I., B. Sedgwick, B. Demple, B. Li, and T. Lindahl (1984) JLnduc- tion of resistance to alkylating agents in E. coli: The ada gene product serves both as a regulatory protein and as an enzyme for repair of mutagenic damage. EMBO J. 3:2151–2157.Google Scholar
  48. 45.
    Volkert, M.R., and D.C. Nguyen (1984) Induction of specific Escherichia coli genes by sublethal treatments with alkylating agents. Proc. Natl. Acad. Sci., USA 81:4110–4114.CrossRefGoogle Scholar
  49. 46.
    Walker, G.C. (1984) Mutagenesis and inducible responses to deoxyribo-nucleic acid damage in Escherichia coli. Microbiol. Rev. 48:60–93.Google Scholar
  50. 47.
    Way, J.C., M.A. Davis, D. Morisato, D.E. Roberts, and N. Kleckner (1984) New TnlO derivatives for transposon mutagenesis and for construction of lacZ operon fusions by transposition. Gene 32:369–379.CrossRefGoogle Scholar
  51. 48.
    Zarbl, H., S. Sukumar, A.V. Arthur, D. Martin-Zanca, and M. Barbacid (1985) Direct mutagenesis of Ha-ras-1 oncogenes by N-nitroso-N-methyl- urea during initiation of mammary carcinogenesis in rats. Nature 315:382–385.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Bruce Demple
    • 1
  • Yasmin Daikh
    • 1
  • Jean Greenberg
    • 1
  • Arlen Johnson
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyHarvard UniversityCambridgeUSA

Personalised recommendations