Quarks in Nucleons and Nuclei

  • F. E. Close
Part of the NATO ASI Series book series (NSSB, volume 139)


When Rutherford and his collaborators used alpha particle beams from radioactive sources in their classic experiments during 1911,they were able to discern the nucleus but not its internal structure. Higher energy probes such as electron beams of the order of 100 MeV are required to discern the individual protons and neutrons within the nucleus. If these beams transfer only a small amount of energy to the nucleus they see the protons and neutrons as pointlike objects; at higher momentum transfers the inner structure of the nucleons begins to be resolved. Very high energy beams of electrons or muons can reveal the quarks within the nucleons. Such experiments were first done around 1970 at Stanford and showed the quarks within the protons of hydrogen. If the target is a heavy nucleus instead of hydrogen then it contains more nucleons and hence more quarks. The event rate should therefore be much higher. This was the original motivation for using heavy nuclei as targets in inelastic electron and muon scattering. Some minor technical problems with Fermi momentum and shadowing were expected but no essentially new features were anticipated.


Structure Function Alpha Particle Quark Distribution Free Nucleon Elastic Form Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    F.E. Close, Introduction to Quarks & Partons ( Academic Press 1979 ). This also contains a detailed bibliography and references to early literature.Google Scholar
  2. 2).
    D. Gross & C.H. Llewellyn Smith, Nucl. Phys. 814, 337 (1969).CrossRefGoogle Scholar
  3. 3).
    A more detailed and expanded discussion is in F.E. Close, Proc. of CSIR Summer School, Stellenbosch South Africa 1985. See also F. Halzen and A. Martin Quarks and Leptons (Wiley 1984 )Google Scholar
  4. 4).
    ABCLOS (BEBC-GGM Collaboration) P. Bosetti et al Nucl. Phys. 8142 1, (19778)Google Scholar
  5. 5).
    G. Altarelli and G. Parisi, Nucl. Phys. 8126, 298 (1977)Google Scholar
  6. 6).
    J.J. Aubert et al. (EMC) Phys. Lett. 1238, 275 (83)Google Scholar
  7. 7).
    A. Bodek et al. Phys Rev. Lett. 50, 1431 (83); 51, 534 (83)Google Scholar
  8. 8).
    R.L. Jaffe, Phys. Rev. Lett. 50,928 (83)Google Scholar
  9. 9).
    A.M. Sarkar-Cooper, CERN/EP 844–121Google Scholar
  10. 10).
    K. Rith, Proc. of the International Europhysics Conference on High Energy Physics, Brighton 1983, p. 80Google Scholar
  11. 11).
    BCDMS collaboration (CERN NA4); quoted by I. Savin, Intl. Conf. on High Energy Physics, Leipzig (1984)Google Scholar
  12. 12).
    F.E. Close, R.G. Roberts and G.G. Ross, Physics Letters 129B, 346 (83)Google Scholar
  13. 13).
    R.L.Jaffe, F.E. Close, R.G. Roberts & G.G. Ross, Physics Letters 134B, 449 (84)Google Scholar
  14. F.E. Close, R.L. Jaffe, R.G. Roberts & G.G. Ross, Phys. Rev. D31, 1004, (85)Google Scholar
  15. R.G. Roberts “Quarks in Nuclei”. To appear in Proc. of Bad Honnef 1984 workshop on Electron and Photon Interactions at Medium Energies (Springer-Verlag)Google Scholar
  16. 14).
    C. Carlson and T.J. Havens, PHys. Rev. Lett. 51, 261 (1983)ADSCrossRefGoogle Scholar
  17. M. Chemtob and R. Peschanski, J. Phys. G10, 599 (19$4)Google Scholar
  18. B. Clark et al. Phys. Rev. D31, 617 (1985)ADSGoogle Scholar
  19. 15).
    J. dias de Deus et al. Phys. Rev. D30, 697 (1984)ADSGoogle Scholar
  20. A. Krzywicki, Phys. Rev. D14, 152 (1976)ADSCrossRefGoogle Scholar
  21. 16).
    H. Faissner and B. Kim, Phys. Lett. 130B, 321 (1983)CrossRefGoogle Scholar
  22. N.N. Nikolaev (unpublished)Google Scholar
  23. 17).
    J. Szwed, Phys. Lett. 128B, 245 (1983)CrossRefGoogle Scholar
  24. S. Fredrikkson, Phys. Rev. Lett. 52, 724 (1984)ADSCrossRefGoogle Scholar
  25. 18).
    H. Pirner and J. Vary, Phys. Rev. Lett. 46, 1376 (1981)ADSCrossRefGoogle Scholar
  26. 19).
    See e.g. the review by M. Harvey in “Short Distance Behaviour in Nuclear Physics” (Plenum 1983).Google Scholar
  27. 20).
    R.G. Arnold et al. Phys. Rev. Lett. 52, 727 (84)Google Scholar
  28. 21).
    C.H. Llewellyn Smith, Phys. Lett. 128B, 107 (83)Google Scholar
  29. M. Ericson and A.W. Thomas, Phys. Lett. 128B, 112 (83)Google Scholar
  30. 22).
    E. Berger, F. Coester and R.B. Wiringa, PHys. Rev. D29, 398 (1984)ADSGoogle Scholar
  31. D. Stump, G. Bertsch and J. Pumplin, “Pionic Interpretation of the EMC effect’ Michigan State (1984)Google Scholar
  32. 23).
    T.A. Carey et al. Phys. Rev. Letters 53, 144 (1984)ADSCrossRefGoogle Scholar
  33. 24).
    A. Vanishtein and V. Zacharov, Phys. Lett. 72B, 368 (197)Google Scholar
  34. 25).
    R.B. Wiringa, R.A. Smith and T.L. Ainsworth, Phys. Rev. C29, 1207 (1984)ADSGoogle Scholar
  35. 26).
    E.L. Berger and F. Coester, Argonne report ANL-HEP-PR84/97 J. Szwed, p. 640 in Proc. of XIX Moriond Conference on High Energy Physics, Editions Frontiers, Paris (J. Tranh Than Van editor)(1984)Google Scholar
  36. 27).
    V.A. Matveer, R. Muradyan, A. Tavkhelidze, Lett. al Nuovo Cim. 7, 719 (1973)CrossRefGoogle Scholar
  37. S.J. Brodsky and G. Farrar, Phys. Rev. Letters 31, 1153 (1973)ADSCrossRefGoogle Scholar
  38. 28).
    R.L. Jaffe, Comments on Nuclear and Particle Physics (1984)Google Scholar
  39. 29).
    R.L. Jaffe and G.G. Ross, Phys. Lett. 93B, 313 (1980)CrossRefGoogle Scholar
  40. 30).
    O. Nachtmann and H. Pirner, Z. Phys C21, 277 (1983)Google Scholar
  41. 31).
    C.H. Llewellyn Smith, Invited Contribution at 10 PANIC, Oxford University report (1985)Google Scholar
  42. 32).
    L.S. Celenza, A. Harindranath, C. Shakin and A. Rosenthal, Brooklyn College BCINT 84/111/132Google Scholar
  43. L.S. Celenza, A. Rosenthal and C. Shaker, Phys. Rev. Letters 53, 892 (1984)ADSCrossRefGoogle Scholar
  44. M. Jandel and G. Peters, Phys. Rev. D30, 1117 (1984)ADSGoogle Scholar
  45. 33).
    C.A. Garcia-Canal et al Phys. Rev. Letters 53, 1430 (1984) S. V. Akulinichev et al, INP Moscow report P-0382 (1984)Google Scholar
  46. 34).
    Staszel et al Phys. Rev.D29, 2638 (1984)Google Scholar
  47. 35).
    P. Mathieu and P.J.S. Watson, Carleton Univ. Canada, unpublished (1985)Google Scholar
  48. 36).
    F.E. Close, R.G. Roberts and G.G. Ross, (unpublished)Google Scholar
  49. 38).
    C. Horowitz, MIT report CTP1224 (1985)Google Scholar
  50. 39).
    A.W. Thomas, University of Adelaide Report “On the Interpretation of the EMC effect” ADP325/Tp (1985)Google Scholar
  51. 40).
    I. Sick, Invited aper at 10 PANIC (1984) ( University of Basel preprint )Google Scholar
  52. 41).
    J.V. Noble, Phys. Rev. Letters 46, 421 (1981)ADSGoogle Scholar
  53. 42).
    R. Altemus et al. Phys. Rev. Letters 44, 965 (1980)ADSCrossRefGoogle Scholar
  54. 43).
    G. Karl and P.J. O’Donnell, Oxford University TP28/84 (1984)Google Scholar
  55. 44).
    R. Friedberg and T.D. Lee, Phys. Rev. D18, 2623 (1978)ADSGoogle Scholar
  56. 45).
    P.B. Siegel, W.B. Kaufman and W.R. Gibbs, Los Alamos reportGoogle Scholar
  57. 46).
    F.E. Close, R.G. Roberts and G.G. Ross, Z. Phys C26, 515 (1984)Google Scholar
  58. 47).
    R. Bickerstaffe, M. Birse and G. Miller, Phys. Rev. Lett. 53, 2532 (1984)ADSCrossRefGoogle Scholar
  59. 48).
    F.E. Close, R.G. Roberts and G.G. Ross, Phys. Letters 142B, 202 (84) LA-UR-84–3937 (Physical Review C to appear)Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • F. E. Close
    • 1
  1. 1.Rutherford Appleton LaboratoryChilton, Didcot, OxonUK

Personalised recommendations