The Boltzmann Equation and Nucleus-Nucleus Collisions

  • Rudi Malfliet
Part of the NATO ASI Series book series (NSSB, volume 139)


One of the very outstanding problems in the study of interacting many-particle systems is the determination of their bulk macroscopic properties and its verification with calculations based on microscopic interactions. For example, in the case of classical fluids we know that the equation of state has a van der Waals form:
$$(p + a{\rho ^2})(1 - b\rho ) = \rho kT$$
where p is the density, T the temperature and p the pressure. The constants a and b are in principle determined by the specifics of the liquid in question. The challenge now is to obtain these through a microscopic calculation starting from the Lennard-Jones interaction between molecules. The equation of state is a macroscopic property of the liquid in equilibrium. There are also non-equilibrium properties like the ρ- and T-dependence of transports coefficients (shear viscosity, thermal conductivity and diffusion). In order to calculate these one needs a dynamical equation appropriate for non-equilibrium processes. In the limit of full equilibration this equation will also tell us about equilibrium properties. A well known example of such an equation is the Boltzmann equation, which however has to be modified in order to correspond (in equilibrium) to the van der Waals equation of state (we will discuss this point further on). In any case for classical fluids there is a whole framework available and this has been studied for many years in the past (see ref. 1).


Boltzmann Equation Nuclear Matter Hard Sphere Pair Correlation Function Pauli Principle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.P. Hansen and I.R. McDonald, Theory of simple liquids (Academic Press, 1976 ).Google Scholar
  2. 2.
    R.L. Liboff, Introduction to the theory of kinetic equations (Wiley, 1969 ).Google Scholar
  3. 3.
    R. Malfliet, Phys.Rev.Lett. 44(1980)864; R. Malfliet and B. Schürmann, Phys.Rev. C31 (1985) 1275.Google Scholar
  4. 4.
    R. Malfliet, Nucl.Phÿs. A363 (1981) 456.ADSCrossRefGoogle Scholar
  5. 5.
    R.J. Glauber and G. Matthiae, Nucl. Phys. B21 (1970) 135.ADSGoogle Scholar
  6. 6.
    W. Zwermann, Z. Phys. A319 (1984) 81.ADSGoogle Scholar
  7. 7.
    J. Hüfner and J. Knoll, Nucl. Phys. A290 (1977) 460.CrossRefGoogle Scholar
  8. J. Knoll and J. Randrup, Nucl. Phys. A324 (1979) 445.CrossRefGoogle Scholar
  9. H. Pirner and B. Schürmann, Nucl. Phys. A316 (1979) 461.CrossRefGoogle Scholar
  10. M. Chemtob and B. Schürmann, Nucl. Phys. A336 (1980) 508.CrossRefGoogle Scholar
  11. M. Chemtob and B. Schürmann, Nucl. Phys. A336 (1980) 508.CrossRefGoogle Scholar
  12. J. Randrup, Nucl. Phys. A316 (1979) 509.CrossRefGoogle Scholar
  13. 8.
    R. Hagedorn and J. Ranft, Nuovo Cim. Suppl. 6 (1968) 169.Google Scholar
  14. R. Hagedorn, Nucl. Phys. B24 (1970) 93.ADSCrossRefGoogle Scholar
  15. 9.
    S. Nagamiya and M. Gyulassy, Advances in Nuclear Physics, ed. Negele-Vogt, Vol. 13 (1984) 201.Google Scholar
  16. 10.
    R. Malfliet and B. Schürmann, Phys. Rev. C28 (1983) 1136.Google Scholar
  17. 11.
    J. Cugnon, Phys. Rev. C22 (1980) 1885.Google Scholar
  18. for a review see: J. Cugnon, Nucl. Phys. A387 (1982) 191.Google Scholar
  19. 12.
    S. Nagamiya et al., Phys. Rev. C24 (1981). 971.ADSGoogle Scholar
  20. 13.
    See e.g. P. R€sibois and M. De Leener, Classical kinetic theory of fluids (Wiley, 1977 ).Google Scholar
  21. 14.
    D. Chandler and J.D. Weeks, Phys. Rev. Lett. 25 (1970) 149.ADSCrossRefGoogle Scholar
  22. 15.
    S.A. Rice and A.R. Alnatt, J. Chem. Phys. 34 (1961) 2144.Google Scholar
  23. 16.
    H.C. Andersen, D. Chandler and J.D. Weeks, Adv. Chem. Phys. 34 (1976) 105.CrossRefGoogle Scholar
  24. 17.
    R.F. Snider, J. Chem. Phys. 32 (1960) 1051.Google Scholar
  25. 18.
    R.G. Newton, Scattering Theory of waves and particles (McGraw-Hill, 1966 ).Google Scholar
  26. 19.
    E.A. Uehling and G.E. Uhlenbeck, Phys. Rev. 43 (1933) 552.ADSCrossRefGoogle Scholar
  27. 20.
    H. Orland and R. Schaeffer, Zeits. f. Phys. A290 (1979) 191. P. Buck and H. Feldmeier, Phys. Lett. 129B (1983) 172.Google Scholar
  28. H. Reinhardt, R. Balian and Y. Alhassid, Nucl. Phys. A422 (1984) 349.MathSciNetCrossRefGoogle Scholar
  29. H. Reinhardt, R. Balian and Y. Alhassid, Nucl. Phys. A422 (1984) 349.MathSciNetCrossRefGoogle Scholar
  30. P. Grangé, H.A. Weidenmuller and G. Wolschin, Ann. Phys. 136 (1981) 190ADSCrossRefGoogle Scholar
  31. 21.
    P.C. Martin and J. Schwinger, Phys. Rev. 115 (1959) 1342. L.P. Kadanoff and G. Baym, “Quantum Statistical Mechanics” (Benjamin, 1962 ).Google Scholar
  32. P. Wölfle, Zeits. f. Physik 232 (1969) 39.Google Scholar
  33. P. Danielewicz, Ann. Phys. 152 (1984) 239.ADSCrossRefGoogle Scholar
  34. 22.
    G. Bertsch, H. Kruse and S. Das Gupta, Phys. Rev. C29 (1984) 673.ADSGoogle Scholar
  35. 23.
    D. Enskog, reprinted in S.G. Bush, Kinetic Theory Pergamon, New York, 1972 ), Vol. 3, p. 226.Google Scholar
  36. 24.
    M. Lacombe, B. Loiseau, J.M. Richard, R. Vinh Mau, J. Cote, P. Pirès and R. de Tourreil, Phys. Rev. C21 (1980) 861.ADSCrossRefGoogle Scholar
  37. 25.
    R.V. Reid, Ann. Phys. 50 (1968) 411.ADSCrossRefGoogle Scholar
  38. 26.
    R. Malfliet, Phys. Rev. Lett. 53 (1984) 2386.CrossRefGoogle Scholar
  39. 27.
    M. Gyulassy, K.A. Fraenkel and H. Stöcker, Phys Lett. 110B (1982) 185.CrossRefGoogle Scholar
  40. 28.
    P. Danielewicz and M. Gyulassy, Phys. Lett. 129B (1983) 282.Google Scholar
  41. 29.
    Proceedings of the 7th High Energy Heavy Ion Study, GSI Darmstadt (1984). GSI-85–10 contributions of H. Stöcker, R. Malfliet and J. Cugnon.Google Scholar
  42. 30.
    J. Aichelin and G. Bertsch, Phys. Rev. C31 (1985) 1730; H. Kruse, B.V. Jacak, J.J. Molitoris, G.D. Westfall and H. Stöcker, Phys. Rev. C31 (1985) 1770.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Rudi Malfliet
    • 1
  1. 1.Kernfysisch Versneller InstituutGroningenThe Netherlands

Personalised recommendations