Models for the Structure of Hadrons: Bags, Solitons

  • P. J. Mulders
Part of the NATO ASI Series book series (NSSB, volume 139)


Hadrons are composite objects built from quarks, as has been learned from deep-inelastic electron scattering experiments. At the scale of momenta larger than 1 GeV/c, or equivalently distances smaller than ∿ 0.2 fm, the quarks behave like free pointlike particles in the nucleon. If one tries to pull one quark away from the others, however, the interaction energy starts to grow linearly with distance, as can be deduced from the straight Regge trajectories (M2 ∿ J) for baryons and mesons and from the potential that is needed to describe the spectra for heavy (charm, bottom) quark-antiquark systems. The proportionality constant is roughly 1 GeV/fm.


Form Factor Quantum Chromo Dynamic Color Singlet Skyrme Model Massless Quark 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Chodos, R.L. Jaffe, K. Johnson, C.B. Thorn, and V.F. Weisskopf, Phys. Rev. D9, 3471 (1974)MathSciNetADSGoogle Scholar
  2. 2.
    R.L. Jaffe: in ‘Pointlike structures inside and outside the nucleon’, proceedings of the 1979 Erice Summer School ’Ettore Majorana’, A. Zichini, ed., Plenum, New York, 1981Google Scholar
  3. 3.
    G. Hooft, lectures at this school; see also C. Quigg, ‘Gauge theories of the strong, weak and electromagnetic interactions’, Frontiers in physics lecture notes series 56, Benjamin/Cummings, London, 1983Google Scholar
  4. 4.
    A. Chodos and C.B. Thorn, Phys. Rev. D12, 2733 (1975)ADSGoogle Scholar
  5. 5.
    J.D. Bjorken and S.D. Drell, ‘Relativistic quantum mechanics’, McGraw-Hill, New York, 1964; note that cpjm in our case differs in sign.Google Scholar
  6. 6.
    C. Rebbi, Phys. Rev. D12, 2407 (1975)MathSciNetADSCrossRefGoogle Scholar
  7. G.E. Brown, J.W. Durso, and M.B. Johnson, Nucl. Phys. A397, 447 (1983)CrossRefGoogle Scholar
  8. P.J. Mulders, Bhamati, L. Heller, A.T. Aerts, and A.K. Kerman, Phys. Rev. D27, 2708 (1983)ADSGoogle Scholar
  9. 7.
    T. DeGrand, R.L. Jaffe, K. Johnson, and J. Kiskis, Phys. Rev. D12, 2060 (1975)ADSCrossRefGoogle Scholar
  10. 8.
    Y. Nambu in ‘Preludes in Theoretical Physics’, A. de Shalit, H. Feshbach, and L. van Hove, eds., North Holland, Amsterdam, 1966, p. 133Google Scholar
  11. 9.
    A. De Rújula, H. Georgi, and S.L. Glashow, Phys. Rev. D12, 147 (1975)Google Scholar
  12. 10.
    J.F. Donoghue and K. Johnson, Phys. Rev. D21 1975 (1980)ADSCrossRefGoogle Scholar
  13. 11.
    R.L. Jaffe, Phys. Rev. Lett. 38, 195 (1977)MathSciNetADSCrossRefGoogle Scholar
  14. R.L. Jaffe, Phys. Rev. D17, 1444 (1978)MathSciNetADSGoogle Scholar
  15. A.T. Aerts, P.J. Mulders, and J.J. de Swart, Phys. Rev. D17, 260 (1978)ADSGoogle Scholar
  16. 12.
    F.E. Close, lectures at this schoolGoogle Scholar
  17. 13.
    R.L. Jaffe and F.E. Low, Phys. Rev. D19, 2105 (1979); for a review see B.L.G. Bakker and P.J. Mulders, NIKHEF preprint P16 (1985), to be published in Adv. Nucl. Phys.Google Scholar
  18. 14.
    Center of mass corrections have been discussed in several papers, e.g. C.W. Wong and K.F. Liu, Phys. Rev. Lett. 41, 62 (1978);Google Scholar
  19. C.W. Wong, Phys. Rev. D24, 1416 (1981); A. Szymacha, in ‘Quarks and Nuclear Structure’, Lecture notes in physics 197, K. Bleuler, ed., Springer, Berlin, 1984, p. 191Google Scholar
  20. 15.
    S.I. So and D. Strottman, J. Math. Phys. 20, 153 (1979)MathSciNetADSMATHCrossRefGoogle Scholar
  21. 16.
    G. Karl, G.A. Miller, and J. Rafelski, Phys. Lett. 143B, 326 (1984)CrossRefGoogle Scholar
  22. 17.
    V. Matveev and P. Sorba, Lett. Nuov. Cim. 20, 435 (1977);CrossRefGoogle Scholar
  23. M. Harvey, Nucl. Phys. A352, 326 (1981)CrossRefGoogle Scholar
  24. 18.
    M. Gell-Mann and M. Lévy, Nuov. Cim. 16, 705 (1960); see for a review B.W. Lee, ‘Chiral Dynamics’. Gordon and Breach, 1972Google Scholar
  25. 19.
    For a review see A.W. Thomas, Adv. Nucl. Phys. 13, 1 (1983)Google Scholar
  26. 20.
    G.F. Chew and F.E. Low, Phys. Rev. 101, 1570 (1955)MathSciNetADSCrossRefGoogle Scholar
  27. 21.
    P.J. Mulders and A.W. Thomas, J. Phys. G9, 1159 (1983)ADSCrossRefGoogle Scholar
  28. 22.
    T.H.R. Skyrme, Proc. R. Soc. London A260, 127 (1961)MathSciNetMATHGoogle Scholar
  29. T.H.R. Skyrme,Nucl. Phys. 31, 556 (1962)Google Scholar
  30. 23.
    G.S. Adkins, C.R. Nappi, and E. Witten. Nucl. Phys. B228, 552 (1983); extension to massive pion in G.S. Adkins and C.R. Nappi, Nucl. Phys. B233, 109 (1984)Google Scholar
  31. 24.
    Solitons in nuclear and elementary particle physics’. A. Chodos, E. Hadjimichael, and C. Tze, eds., World Scientific, Singapore, 1984Google Scholar
  32. 25.
    E. Witten, Nucl. Phys. B160, 57 (1979)MathSciNetADSCrossRefGoogle Scholar
  33. 26.
    J. Goldstone and R.L. Jaffe, Phys. Rev. Lett. 51, 1518 (1983)ADSCrossRefGoogle Scholar
  34. 27.
    P.J. Mulders, Phys. Rev. D30, 1073 (1984)ADSGoogle Scholar
  35. I. Zahed, U.-G. Meissner, and A. Wirzba, Phys. Lett. 145B, 117 (1984)CrossRefGoogle Scholar
  36. L. Vepstas, A.D. Jackson and A.S. Goldhaber, Phys. Lett. 140B, 280 (1984)CrossRefGoogle Scholar
  37. 28.
    P.J. Mulders in proceedings Of the workshop on ‘Electron and Photon Interactions at medium energies’, Bad Honnef, October 1984, Lecture notes in Physics (to be published).Google Scholar
  38. 29.
    M. Rho, Lectures at Int. School of Physics ‘Enrico Fermi’ in honor of Hans A. Bethe, June 1984, Saclay preprint PhT 84. 123Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • P. J. Mulders
    • 1
  1. 1.NIKHEF-KAmsterdamThe Netherlands

Personalised recommendations