Mechanical Correlates of Noise Trauma in the Mammalian Cochlea

  • Robert Patuzzi
Part of the NATO ASI Series book series (NSSA, volume 111)


Recent observations of the vibration of the cochlear partition in the cat [1], the guinea pig [2,3] and the chinchilla [4] have supported and extended the work of Rhode [5] in the squirrel monkey. These studies have shown that in the normal animal many aspects of the electrical responses from inner hair cells (and therefore the primary afferents that innervate them) can be explained in terms of the vibration of the cochlear partition. Futhermore, the changes in vibration observed following surgical trauma and loud sound [2] indicate that at least some portion of noise-induced hearing loss (NIHL) can be attributed to disruption of this vibration. The following paper attempts to summarize what is known of the vibration of the cochlear partition and how this information relates to NIHL.


Hair Cell Sound Pressure Level Sound Level Outer Hair Cell Basilar Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. M. Khanna and D. G. B. Leonard, Basilar membrane tuning in the cat cochlea, Science, 215:305 (1982).CrossRefGoogle Scholar
  2. 2.
    P. M. Sellick, R. Patuzzi and B. M. Johnstone, Measurement of basilar membrane motion in the guinea pig using the Mossbauer technique, J. Acoust. Soc. Am. 72:131 (1982).CrossRefGoogle Scholar
  3. 3.
    E. L. Le Page and B. M. Johnstone, Non linear mechanical behaviour of the basilar membrane in the guinea pig cochlea, Hearing Res. 2:183 (1980).CrossRefGoogle Scholar
  4. 4.
    L. Robles, M. A. Ruggero and N. C. Rich, Mossbauer measurements of basilar membrane tuning curves in the chinchilla, J. Acoust. Soc. Am. 76:S35 (1984).CrossRefGoogle Scholar
  5. 5.
    W. Rhode, Observations of the vibration of the basilar membrane in squirrel monkeys using the Mossbauer technique, J. Acoust. Soc. Am. 49:1218 (1971).CrossRefGoogle Scholar
  6. 6.
    G. V. Bekesy, “Experiments in Hearing,” McGraw-Hill, New York (1960).Google Scholar
  7. 7.
    D. Robertson and B. M. Johnstone, Aberrant tonotopic organization in the the inner ear damaged by kanamycin, J. Acoust. Soc. Am. 66:466 (1979).CrossRefGoogle Scholar
  8. 8.
    P. M. Sellick, R. Patuzzi and B. M. Johnstone, Comparison between the tuning properties of inner hair cells and basilar membrane motion, Hearing Res. 10:93 (1983).CrossRefGoogle Scholar
  9. 9.
    P. M. Sellick, G. K. Yates and R. Patuzzi, The influence of Mossbauer source size and position on phase and amplitude measurements of the guinea pig basilar membrane, Hearing Res. 10:101 (1982).CrossRefGoogle Scholar
  10. 10.
    R. Patuzzi, P. M. Sellick and B. M. Johnstone, Cochlear drainage and basilar membrane tuning, J. Acoust. Soc. Am. 72:1064 (1982).CrossRefGoogle Scholar
  11. 11.
    A. R. Cody and B. M. Johnstone, Single auditory neuron response during acute acoustic trauma. Hearing Res. 3:3 (1980).CrossRefGoogle Scholar
  12. 12.
    R. Patuzzi and P. M. Sellick, The alteration of the low frequency response of primary auditory afferents by cochlear trauma, Hearing Res. 11:125 (1983).CrossRefGoogle Scholar
  13. 13.
    W. G. Sokolich, R. P. Hamernik, J. J. Zwislocki and R. A. Schmeidt, Inferred response polarities of cochlear hair cells, J. Acoust. Soc. Am. 59:963 (1976).CrossRefGoogle Scholar
  14. 14.
    N. Y. S. Kiang and E. K. Moxon, Tails of tuning curves of auditory nerve fibers, J. Acoust. Soc. Am. 55:620 (1974).CrossRefGoogle Scholar
  15. 15.
    E. de Boer, No sharpening? A challenge for cochlear mechanics, J. Acoust. Soc. Am. 73:567 (1983).CrossRefGoogle Scholar
  16. 16.
    S. J. Neely, and D. O. Kim, An active cochlear model showing sharp tuning and high sensitivity, Hearing Res. 9:123 (1983).CrossRefGoogle Scholar
  17. 17.
    D. Davis, An active process in cochlear mechanics, Hearing Res. 9:79 (1983).CrossRefGoogle Scholar
  18. 18.
    R. A. Schmeidt, Single and two-tone effects in normal and abnormal cochleas: A study of cochlear microphonics and auditory-nerve units, ISR Special Report, Syracuse University, New York (1977).Google Scholar
  19. 19.
    D. Robertson, Effects of acoustic trauma on stereocilia ultrastructure and spiral ganglion tuning properties in the guinea pig cochlea, Hearing Res. 7:55 (1982).CrossRefGoogle Scholar
  20. 20.
    M. C. Liberman and M. J. Mulroy, Acute and chronic effects of acoustic trauma: Cochlear pathology and auditory nerve pathophysiology, in: “New Perspectives on Noise-Induced Hearing Loss,” Raven Press, New York, (1982).Google Scholar
  21. 21.
    D. C. Mountain, Changes in endolymphatic potential and crossed olivocochlear bundle stimulation alter cochlear mechanics, Science 210:71 (1980).CrossRefGoogle Scholar
  22. 22.
    R. Patuzzi, A simple model of the generation of the cochlear microphonic, (in preparation).Google Scholar
  23. 23.
    R. Patuzzi and P. M. Selliek, The modulation of the sensitivity of the mammalian cochlea by low frequency tones: II. Hair cell receptor potentials, Hearing Res. 13:9 (1983).CrossRefGoogle Scholar
  24. 24.
    R. Patuzzi, P. M. Selliek, and B. M. Johnstone, The modulation of sensitivity of the mammalian cochlea by low frequency tones: III. Basilar membrane motion, Hearing Res. 13:19 (1983)CrossRefGoogle Scholar
  25. 25.
    T. F. Weiss, Bidirectional transduction in vertebrate hair cells: A mechanism for coupling mechanical and electrical processes, Hearing Res. 7:353 (1982).CrossRefGoogle Scholar
  26. 26.
    Cody, A. R. and I. J. Russell, Outer hail cells in the mammalian cochlea and noise-induced hearing loss, Nature 315:662 (1985).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Robert Patuzzi
    • 1
  1. 1.Physiology DepartmentUniversity of W.A.PerthWestern Australia

Personalised recommendations