The Application of Morphometric and Stereological Principles to Epithelial Tissues: Theoretical and Practical Considerations

  • F. H. White
Part of the NATO ASI Series book series (NSSA, volume 111)


The study of the spatial relationships between cells, their contents and the ways in which they interact with each other and with the extracellular matrix can only be studied by microscopical techniques. Apart from the straightforward methods of light and electron microscopy available for examining normal, diseased and experimentally treated cells and tissues, the experimental biologist now has a variety of additional techniques available for investigating cytological and histological features. These include autoradiography, histochemistry and cytochemistry, immunochemistry and quantitative morphology. These techniques enable us to draw conclusions about the structure and functions of cells in their proper arrangement, and by making comparisons between normal and altered tissue or cellular structure, we can learn and ultimately understand the mechanisms which govern and control normal and diseased tissues.


Lamina Propria Volume Density Numerical Density Stratify Squamous Epithelium Cheek Pouch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. P. A. Baak and J. Oort, “A Manual of Morphometry in Diagnostic Pathology,” Springer Verlag, Heidelberg (1983).CrossRefGoogle Scholar
  2. 2.
    E. R. Weibel, “Stereological Methods, Vol. 1: Practical Methods for Biological Morphometry,” Academic Press, London (1979).Google Scholar
  3. 3.
    S. Bradbury, Commercial image analysers and the characterization of microscopical images, J. Microsc., 131:203 (1983).CrossRefGoogle Scholar
  4. 4.
    K. Goerttler and M. Stohr, Automated cytology: the state of the art, Archs. Pathol. Lab. Med., 106:657 (1982).Google Scholar
  5. 5.
    R. C. Braylan, Flow cytometry, Archs. Pathol. Lab. Med., 107:1 (1983).Google Scholar
  6. 6.
    R. T. DeHoff and F.N. Rhines, “Quantitative Microscopy,” McGraw Hill, New York (1968).Google Scholar
  7. 7.
    E. R. Weibel, Stereologic principles for morphometry in electron microscopic cytology, Int. Rev. Cytol., 26:235 (1969).CrossRefGoogle Scholar
  8. 8.
    E. R. Weibel, “Stereological Methods, Vol. 2: Theoretical Foundations,” Academic Press, London (1980).Google Scholar
  9. 9.
    E. E. Underwood, “Quantitative Stereology,” Addison-Wesley, Reading, Massachusetts (1970).Google Scholar
  10. 10.
    T. M. Mayhew, Basic stereological relationships for quantitative microscopical anatomy — a simple systematic approach, J. Anat., 129:95 (1979).Google Scholar
  11. 11.
    H. J. G. Gundersen, Stereology — or how figures for spatial shape and content are obtained by observation of structures in sections, Microscop. Acta., 83:409 (1980).Google Scholar
  12. 12.
    H. J. G. Gundersen, M. Boysen and A. Reith, Comparison of semiautomatic digitizer tablet and simple point counting performance in morphometry, Virch. Arch. B. Cell Pathol., 37:317 (1981).CrossRefGoogle Scholar
  13. 13.
    E. R. Weibel and D. M. Gomez, A principle for counting tissue structures on random sections, J. Appl. Physiol., 17:343 (1962).Google Scholar
  14. 14.
    T. M. Mayhew, A. J. Burgess, C. D. Gregory and M. E. Atkinson, On the problem of counting and sizing mitochondria: a general reappraisal based on ultrastructural studies of mammalian lymphocytes, Cell Tiss. Res., 204:297 (1979).CrossRefGoogle Scholar
  15. 15.
    F. H. White, T. M. Mayhew and K. Gohari, Stereological methods for quantifying cell surface specializations in epithelia, including a concept for counting desmosomes and hemidesmosomes, Brit. J. Dermatol., 107:401 (1982).CrossRefGoogle Scholar
  16. 16.
    F. H. White and K. Gohari, Hemidesmosomal dimensions and frequency in experimental oral carcinogenesis; a stereological investigation, Virch. Arch. B. Cell Pathol., 45:1 (1984).CrossRefGoogle Scholar
  17. 17.
    F. H. White and K. Gohari, Desmosomes in hamster cheek pouch epithelium: their quantitative characterization during epithelial differentiation, J. Cell Sci., 66:411 (1984).Google Scholar
  18. 18.
    M. Abercrombie, Estimation of nuclear population from microtome sections, Anat. Rec., 94:239 (1946).CrossRefGoogle Scholar
  19. 19.
    H. W. Chalkley, J. Cornfield and H. Park, A method for estimating volume-surface ratios, Science, 110:295 (1949).CrossRefGoogle Scholar
  20. 20.
    A. Reith, T. Barnard and H. Rohr, Stereology of cellular reaction patterns, CRC Crit. Rev. Toxicol., 4:219 (1976).Google Scholar
  21. 21.
    M. A. Williams, Quantitative methods in biology in: “Practical Methods in Electron Microscopy,” Vol. 6, A. M. Glauert, ed., Elsevier North Holland Biomedical Press, Amsterdam (1977).Google Scholar
  22. 22.
    M. Lindberg, Variation in epidermal structure as a function of different fixation methods: a stereological and morphological study, J. Submicrosc. Cytol., 15:549 (1983).Google Scholar
  23. 23.
    H. E. Schroeder and S. Munzel-Pedrazzoli, Application of stereologic methods to stratified gingival epithelia, J. Microsc., 92:179 (1970).CrossRefGoogle Scholar
  24. 24.
    M. A. Landay and H. E. Schroeder, Quantitative electron microscopic analysis of the stratified epithelium of normal human buccal mucosa, Cell Tiss. Res., 177:383 (1977).CrossRefGoogle Scholar
  25. 25.
    F. H. White, D. A. Thompson and K. Gohari, Ultrastructural morphometry of gap junctions during differentiation of stratified squamous epithelium, J. Cell Sci., 69:67 (1984).Google Scholar
  26. 26.
    K. Gohari and F. H. White, A morphometric study of alterations in rough endoplasmic reticulum during differentiation in stratified squamous epithelium, Arch. Dermatol. Res., 276:303 (1984).CrossRefGoogle Scholar
  27. 27.
    M. Boysen and A. Reith, Stereological analysis of nasal mucosa III. Stepwise alterations in cellular and subcellular components of pseudo-stratified metaplastic and dysplastic epithelium in nickel workers, Virch. Arch. B. Cell Pathol., 40:311 (1982).CrossRefGoogle Scholar
  28. 28.
    M. Boysen and A. Reith, Discrimination of various epithelia by simple morphometric evaluation of the basal cell layer. A light microscopical analysis of pseudostratified, metaplastic and dysplastic nasal epithelium in nickel workers, Virch. Arch. B. Cell Pathol., 42:173 (1983).Google Scholar
  29. 29.
    T. M. Mayhew and M. A. Williams, A comparison of two sampling procedures for stereological analysis of cell pellets, J. Microsc., 94:195 (1971).CrossRefGoogle Scholar
  30. 30.
    T. M. Mayhew and L. M. Cruz-Orive, Some stereological correction formulae with particular applications in quantitative neurohistology, J. Neurol. Sci., 26:503 (1975).CrossRefGoogle Scholar
  31. 31.
    T. M. Mayhew and L. M. Cruz-Orive, Stereological correction procedures for estimating true volume proportions from biased samples, J. Microsc., 9:287 (1973).CrossRefGoogle Scholar
  32. 32.
    J. Shay, Economy of effort in electron microscope morphometry, Amer. J. Pathol., 81:503 (1975)Google Scholar
  33. 33.
    T. M. Mayhew, Stereology: progress in quantitative microscopical anatomy in: “Progress in Anatomy,” V. Navaratnam and R. J. Harrison, eds., 3:81 (1983).Google Scholar
  34. 34.
    H. J. G. Gundersen and R. Osterby, Optimizing sampling efficiency of stereological studies in biology or “Do more less well!”, J. Microsc., 121:65 (1981).CrossRefGoogle Scholar
  35. 35.
    M. Gupta, T. M. Mayhew, K. S. Bedi, A. K. Sharma and F. H. White, Interanimal variation and its influence on the overall precision of morphometric estimates based on nested sampling designs, J. Microsc., 131:147 (1983).CrossRefGoogle Scholar
  36. 36.
    T. M. Mayhew, F. H. White and K. Gohari, Towards economy of effort in quantitative ultrastructural pathology; efficient sampling schemes for studying experimental carcinogenesis, J. Pathol. 138:179 (1982).CrossRefGoogle Scholar
  37. 37.
    J. P. Kroustrup and H. J. G. Gundersen, Sampling problems in an heterogeneous organ; quantitation of relative and total volume of pancreatic islets by light microscopy, J. Microsc., 132:43 (1983).CrossRefGoogle Scholar
  38. 38.
    A. D. Hally, A counting method for measuring the volumes of tissue components in microscopical sections, Quart. J. Microsc. Sci., 105:503 (1964).Google Scholar
  39. 39.
    H. W. Chalkley, Methods for quantitative morphological analysis of tissue, J. Nat. Cancer Inst., 4:47 (1943).Google Scholar
  40. 40.
    M. S. Dunnill, Quantitative Methods in Histology in: “Recent Advances in Clinical Pathology Series V,” S. C. Dyke, ed., 401–416, Churchill, London (1968).Google Scholar
  41. 41.
    L. M. Cruz-Orive and E. R. Weibel, Sampling designs for stereology, J. Microsc., 122:235 (1981).CrossRefGoogle Scholar
  42. 42.
    B. M. J. Stringer, D. Wynford-Thomas and E. D. Williams, Physical randomization of tissue architecture: an alternative to systematic sampling, J. Microsc., 126:179 (1982).CrossRefGoogle Scholar
  43. 43.
    J. Folkman and R. Cotran, Relation of vascular proliferation to tumor growth, Int. Rev. Exp. Pathol., 26:206 (1976).Google Scholar
  44. 44.
    I. R. H. Kramer, Basic histopathological features of oral premalignant lesions in: “Oral Premalignancy: Proceedings of the First Dows Symposium,” I. C. Mackenzie, E. Dabelsteen and C. A. Squier, eds., 23-24, University of Iowa Press (1980).Google Scholar
  45. 45.
    F. H. White and K. Gohari, Cellular and nuclear volumetric alterations during differentiation of normal hamster cheek pouch epithelium, Archs. Dermatol. Res., 273:307 (1982).CrossRefGoogle Scholar
  46. 46.
    F. H. White, R. M. Codd and K. Gohari, An ultrastructural morphometric study of cellular and nuclear volume alterations during experimental oral carcinogenesis, J. Submicrosc. Cytol. In press.Google Scholar
  47. 47.
    F. H. White and K. Gohari, A quantitative ultrastructural study of alterations in the area of the basal cell-stromal interface during experimental oral carcinogenesis, J. Oral Pathol., 14:227 (1985).CrossRefGoogle Scholar
  48. 48.
    F. H. White and K. Gohari, Quantitative studies of hemidesmosomes during progressive DMBA carcinogenesis in hamster cheek pouch mucosa, Brit. J. Cancer, 44:440 (1981b).CrossRefGoogle Scholar
  49. 49.
    F. H. White and K. Gohari, A quantitative study of lamina densa alterations in hamster cheek pouch carcinogenesis, J. Pathol., 135:277 (1981c).CrossRefGoogle Scholar
  50. 50.
    H. E. Schroeder and S. Munzel-Pedrazzoli, Morphometric analysis comparing junctional and oral epithelium of normal human gingiva, Heav. Odontol. Acta., 14:53 (1970).Google Scholar
  51. 51.
    G. Rowden, Ultrastructural studies of keratinized epithelia of the mouse III: Determination of the volumes of nuclei and cytoplasm of cells in murine epidermis, J. Invest. Dermatol., 64:1 (1975).CrossRefGoogle Scholar
  52. 52.
    G. Rowden, Ultrastructural studies of keratinised epithelia in the mouse IV: Quantitative studies of lysosomes, J. Invest. Dermatol., 64:4 (1975).CrossRefGoogle Scholar
  53. 53.
    M. Meyer and H. E. Schroeder, A quantitative electron microscopic analysis of the keratinizing epithelium of normal human hard palate, Cell Tiss. Res., 158:177 (1975).CrossRefGoogle Scholar
  54. 54.
    J. P. Bernimoulin and H.E. Schroeder, Quantitative electron microscopic analysis of the epithelium of normal human alveolar mucosa, Cell Tiss. Res., 180:383 (1977).CrossRefGoogle Scholar
  55. 55.
    L. Andersen and H. E. Schroeder, Quantitative analysis of squamous epithelium of normal palatal mucosa in guinea pigs, Cell Tiss. Res., 190:223 (1978).CrossRefGoogle Scholar
  56. 56.
    A. J. P. Klein-Szanto, Stereologic baseline data of normal human epidermis, J. Invest. Dermatol., 68:73 (1977).CrossRefGoogle Scholar
  57. 57.
    F. H. White and K. Gohari, Volumetric alterations in tonofibrils during epithelial differentiation in hamster cheek pouch mucosa, J. Anat., 137:489 (1983).Google Scholar
  58. 58.
    F. H. White and K. Gohari, Stereological studies of differentiation in hamster cheek pouch epithelium: variations in the volume and frequency of mitochondria, J. Anat., 136:801 (1983).Google Scholar
  59. 59.
    T. D. Allen and C. S. Potten, Ultrastructural site variations in mouse epidermal organization, J. Cell Sci., 21:341 (1976).Google Scholar
  60. 60.
    C. D. Franklin and G. T. Craig, Stereological quantification of histological parameters in normal hamster cheek pouch epithelium, Archs. Oral Biol., 23:337 (1978).CrossRefGoogle Scholar
  61. 61.
    L. Fleisch, P. Cleaton-Jones and J. C. Austin, Oral mucosa of the vervet monkey, J. Periodont. Res., 15:444 (1980).CrossRefGoogle Scholar
  62. 62.
    M. W. Hill, J. H. Berg and I. C. Mackenzie, Quantitative evaluation of regional differences between epithelia in the adult moose, Archs. Oral Biol., 26:1063 (1981).CrossRefGoogle Scholar
  63. 63.
    J. Scott, J. A. Valentine, C. A. St. Hill and B. A. W. Balasooriya, A quantitative histological analysis of the effects of age and sex on human lingual epithelium, J. Biol. Bucc., 11:303 (1983).Google Scholar
  64. 64.
    L. S. Sauter and E. R. Weibel, Morphometric evaluation of skin structure by stereologic methods, Dermatologica, 143:174 (1971).CrossRefGoogle Scholar
  65. 65.
    H. E. Schroeder and S. Munzel-Pedrazzoli, Correlated morphometric and biochemical analysis on gingival tissues: Morphometric model, tissue sampling and test of stereologic procedures, J. Microsc., 99:301 (1973).CrossRefGoogle Scholar
  66. 66.
    A. J. P. Klein-Szanto and H. E. Schroeder, Architecture and density of the connective tissue papillae of the human oral mucosa, J. Anat., 123:93 (1977).Google Scholar
  67. 67.
    P. B. Klein, W. A. Weilenmann and H. E. Schroeder, Structure of the soft palate and composition of the oral mucous membrane in monkeys, Anat. Embryol., 156:197 (1979).CrossRefGoogle Scholar
  68. 68.
    H. E. Schroeder and A. Dorig-Schwartzenbach, Structure and composition of the oral mucous membrane on the lips and cheeks of the monkey, Macaca fascicularis, Cell Tiss. Res., 224:89 (1982).CrossRefGoogle Scholar
  69. 69.
    M. J. Stablein, J. Meyer and J. P. Waterhouse, Epithelial dimensions and capillary supply in the oral mucosa of the rat, Archs. Oral Biol., 27:243 (1982).CrossRefGoogle Scholar
  70. 70.
    C. D. Franklin and G. T. Craig, Stereological quantification of histological parameters in turpentine-induced hyperplasia of hamster cheek pouch epithelium, Archs. Oral Biol., 23:347 (1978).CrossRefGoogle Scholar
  71. 71.
    N. E. Steidler and P. C. Reade, Histomorphological effects of epidermal growth factor on skin and oral mucosa in neonatal mice, Archs. Oral Biol., 25:37 (1980).CrossRefGoogle Scholar
  72. 72.
    J. Meyer, M. Stohle and M. Stablein, Correlation of changes in capillary supply and epithelial dimensions in the hyperplastic buccal mucosa of zinc-deficient rats, J. Oral Pathol., 10:49 (1981).CrossRefGoogle Scholar
  73. 73.
    M. W. Hill, R. R. Harris and C. P. Carron, A quantitative ultrastructural analysis of changes in hamster cheek pouch epithelium treated with vitamin A, Cell Tiss. Res., 226:541 (1982).CrossRefGoogle Scholar
  74. 74.
    A. J. P. Klein-Szanto and T. J. Slaga, Numerical variation of dark cells in normal and chemically-induced hyperplastic epidermis with age of animal and efficiency of tumor promoter, Cancer Res., 41:4437 (1981).Google Scholar
  75. 75.
    G. P. M. Moore, B. A. Panaretto and D. Robertson, Epidermal growth factor delays the development of the epidermis and hair follicles of mice during growth of the first coat, Anat. Rec., 205:47 (1983).CrossRefGoogle Scholar
  76. 76.
    L. Andersen, Quantitative analysis of epithelial changes during wound healing in palatal mucosa of guinea pigs, Cell Tiss. Res., 193:231 (1978).CrossRefGoogle Scholar
  77. 77.
    V. Trinkaus-Randall and I. K. Gipson, Role of calcium and calmodulin in hemidesmosome formation in vitro, J. Cell Biol., 98:1565 (1984).CrossRefGoogle Scholar
  78. 78.
    J. S. Nennie and D. G. MacDonald, Quantitative histological analysis of the epithelium of the ventral surface of hamster tongue in experimental iron deficiency, Archs. Oral Biol., 27:393 (1982).CrossRefGoogle Scholar
  79. 79.
    C. A. Squier and C. R. Kremenak, Quantitation of the healing palatal mucoperiosteal wound in the beagle dog, Brit. J. Exp. Pathol., 63:573 (1982).Google Scholar
  80. 80.
    J. S. Rennie, D.G. MacDonald and J. H. Dagg, Quantitative analysis of human buccal epithelium in iron deficiency anemia, J. Oral Pathol., 11:39 (1982).CrossRefGoogle Scholar
  81. 81.
    A. J. P. Klein-Szanto, L. Andersen and H. E. Schroeder, Epithelial differentiation patterns in buccal mucosa affected by lichen planus, Virch. Archiv. B. Cell Pathol., 22:245 (1976).Google Scholar
  82. 82.
    A. J. P. Klein-Szanto, J. Banoczy and H. E. Schroeder, Metaplastic conversion of the differentiation pattern in oral epithelium affected by leukoplakia simplex. A stereologic study, Pathol. Europ., 11:189 (1976).Google Scholar
  83. 83.
    M. Chiba, T. J. Slaga and A. J. P. Klein-Szanto, A morphometric study of dedifferentiated and involutional dark keratinocytes in 12-0-tetradecanoylphorbol-13-acetate-treated mouse epidermis, Cancer Res., 44:2711 (1984).Google Scholar
  84. 84.
    F. H. White, T. M. Mayhew and K. Gohari, The application of morphometric methods to investigations of normal and pathological stratified squamous epithelium, Pathol. Res. Pract., 166:323 (1980).CrossRefGoogle Scholar
  85. 85.
    J. W. Eveson and D. G. MacDonald, Quantitative histological changes during early experimental carcinogenesis in the hamster cheek pouch, Brit. J. Dermatol., 98:639 (1978).CrossRefGoogle Scholar
  86. 86.
    C. D. Franklin and C. J. Smith, Stereological analysis of histological parameters in experimental premalignant hamster cheek pouch epithelium, J. Pathol., 130:201 (1980).CrossRefGoogle Scholar
  87. 87.
    S. G. Tarpey and F. H. White, Ultrastructural morphometry of collagen from lamina propria during experimental oral carcinogenesis and chronic inflammation, J. Cancer Res. Clin. Oncol., 107:183 (1984).CrossRefGoogle Scholar
  88. 88.
    F. H. White and K. Gohari, Alterations in the volume of the intercellular space between epithelial cells of the hamster cheek pouch: quantitative studies of normal and carcinogen-treated tissues, J. Oral Path., 13:244 (1984).CrossRefGoogle Scholar
  89. 89.
    N. S. McNutt, Ultrastructural comparison of the interface between epithelium and stroma in basal cell carcinoma and control human skin, Lab. Invest., 35:132 (1976).Google Scholar
  90. 90.
    G. Wiernik, S. Bradbury, M. Plant, R. H. Cowdell and E. A. Williams, A quantitative comparison between normal and carcinomatous squamous epithelia of the uterine cervix, Brit. J. Cancer, 28:488 (1973).CrossRefGoogle Scholar
  91. 91.
    B. U. Pauli, S. M. Cohen, J. Alroy and R. S. Weinstein, Desmosome ultrastructure and the biological behaviour of chemical carcinogen-induced urinary bladder carcinomas, Cancer Res., 38:3276 (1978).Google Scholar
  92. 92.
    G. H. Cope and M. A. Williams, Exocrine secretion in the parotid gland: a stereological analysis at the electron microscopic level of the zymogen granule content before and after isoprenaline-induced degranulation, J. Anat., 116:269 (1973).Google Scholar
  93. 93.
    G. H. Cope and M. A. Williams, Quantitative analyses of the constituent membranes of parotid acinar cells and of the changes evident after induced exocytosis, Z. Zellforsch., 145:311 (1973).CrossRefGoogle Scholar
  94. 94.
    M. K. Pratten, M. A. Williams and G. H. Cope, Compartmentation of enzymes in the rabbit parotid salivary gland. A study by enzyme histochemical, tissue fractionation and morphometric techniques, Histochem. J., 9:573 (1977).CrossRefGoogle Scholar
  95. 95.
    A. V. Loud, A quantitative stereological description of the ultrastructure of normal rat liver parenchymal cells, J. Cell Biol., 37:27 (1968).CrossRefGoogle Scholar
  96. 96.
    E. R. Weibel, W. Staubli, H. R. Gnagi and F. A. Hess, Correlated morphometric and biochemical studies on the liver cell. I: Morphometric model, stereologic methods and normal morphometric data for rat liver, J. Cell Biol., 42:68 (1969).CrossRefGoogle Scholar
  97. 97.
    G. Borgia, J. Crowell, M. Cocchiarano, N. Abrescia, A. Lambiase, G. D’Alfonso, W. Schreil and M. Piazza, Ultrastructural changes in mouse liver cells: a morphometric study on the influence of morphine, heroin and cardiostenol, J. Ultrastruct. Res., 80:123 (1982).CrossRefGoogle Scholar
  98. 98.
    R. P. Bolender, Stereological analysis of guinea pig pancreas 1. Analytical model and quantitative description of non-stimulated exocrine cells, J. Cell Biol., 61:269 (1974).CrossRefGoogle Scholar
  99. 99.
    J. R. Imrie, D. G. Fagan and J. M. Sturgess, Quantitative evaluation of the development of the exocrine pancreas in cystic fibrosis and control infants, Amer. J. Pathol., 95:697 (1979).Google Scholar
  100. 100.
    M. E. Boon, P. A. Trott, H. Van Kaam, P. J. H. Kurver, A. Leach and J. P. A. Baak, Morphometry and cytodiagnosis of breast lesions, Virch. Arch. A. Pathol. Anat., 396:9 (1982).CrossRefGoogle Scholar
  101. 101.
    J. P. A. Baak, P. H. J. Kurver, J. E. Snoo-Nieuwlaat, S. de Graaf, B. de Makkink and M.E. Boon, Prognostic indicators in breast cancer — morphometric methods, Histopathology, 6:327 (1982).CrossRefGoogle Scholar
  102. 102.
    J. V. Frei, Objective measurement of basement membrane abnormalities in human neoplasms of colorectum and of breast, Histopathology, 2:107 (1978).CrossRefGoogle Scholar
  103. 103.
    P. Rebuffat, C. Robba, A. S. Belloni, G. Mazzocchi, P. Vassanelli and G. G. Nussdorfer, An electron microscopic stereological study of the compensatory hypertrophy of the rat adrenal zona fasciculata after unilateral adrenalectomy, Cell Tiss. Res., 225:455 (1982).CrossRefGoogle Scholar
  104. 104.
    K. Saito, T. Takahashi, N. Yaginuma and N. Iwama, Islet morphometry in the diabetic pancreas, Tohoku J. Exp. Med., 125:185 (1978).CrossRefGoogle Scholar
  105. 105.
    K. Saito, N. Iwama and T. Takahashi, Morphometrical analysis of topographical differences in size distribution, number and volume of islets in the human pancreas, Tohoku J. Exp. Med., 124:177 (1978).CrossRefGoogle Scholar
  106. 106.
    A. J. P. Klein-Szanto, P. Nettesheim, D. C. Topping and A. C. Olson, Quantitative analysis of disturbed cell maturation in dysplastic lesions of the respiratory tract epithelium, Carcinogenesis, 1:1007 (1980).CrossRefGoogle Scholar
  107. 107.
    A. J. P. Klein-Szanto, P. Nettesheim and G. Saccomano, Dark epithelial cells in preneoplastic lesions of the human respiratory tract, Cancer, 50:107 (1982).CrossRefGoogle Scholar
  108. 108.
    E. M. McDowell, K. P. Keenan and M. Huang, Effects of vitamin A deprivation on hamster tracheal epithelium. A quantitative morphologic study, Virch. Arch. B. Cell Pathol., 45:197 (1984).CrossRefGoogle Scholar
  109. 109.
    E. M. McDowell, K. P. Keenan and M. Huang, Restoration of mucociliary tracheal epithelium following deprivation of vitamin A. A quantitative morphologic study, Virch. Arch. B. Cell Pathol., 45:221 (1984).CrossRefGoogle Scholar
  110. 110.
    M. Boysen and A. Reith, Light and electron microscopic studies by manual and semiautomatic morphometric analysis of the basal layer, Meth. Achiev. Exp. Pathol., 11:111 (1984).Google Scholar
  111. 111.
    E. R. Weibel, Morphometry of the human lung: the state of the art after two decades, Bull. Eur. Physiopathol. Respir., 15:999 (1979).Google Scholar
  112. 112.
    J. F. Bertram and A. W. Rogers, The development of squamous cell metaplasia in human bronchial epithelium by light microscopic morphometry, J. Microsc., 123:61 (1980).CrossRefGoogle Scholar
  113. 113.
    B. Vidic and P. H. Burri, Morphometric analysis of the remodelling of the rat pulmonary epithelium during early postnatal development, Anat. Rec., 207:317 (1983).CrossRefGoogle Scholar
  114. 114.
    H. Elias and A. Hennig, Stereology of the human renal glomerulus in: “Quantitative Methods in Morphology,” E. R. Weibel and H. Elias, eds. ”, 130–166, Springer Verlag, Berlin (1967).CrossRefGoogle Scholar
  115. 115.
    K. Kawano, J. McCoy, J. Wenzl, J. Porch, C. Howard, M. Goddard and P. Kimmelstiel, Quantitation of glomerular structure. A study of methodology, Lab. Invest., 25:343 (1971).Google Scholar
  116. 116.
    T. Nomppanen and Y. Collan, Morphometricalmethod foranalysis of kidney biopsies in diagnostic histopathology, Stereol. Jugosl., 3: Suppl. 1, 435 (1981).Google Scholar
  117. 117.
    G. C. Schofield, S. Ito and R. P. Bolender, Changes in membrane surface areas in mouse parietal cells in relation to high levels of acid secretion, J. Anat., 128:669 (1979).Google Scholar
  118. 118.
    R.J. Buschmann and D.J. Manke, Morphometric analysis of the membranes and organelles of small intestine enterocytes. 1: Fasted hamsters, J. Ultrastruct. Res., 76:1 (1981).CrossRefGoogle Scholar
  119. 119.
    G. H. Cope, Stereological techniques and their application to the gastrointestinal tract and its glands in: “Techniques in the Life Sciences, Vol. P2, Techniques in Digestive Physiology,” D. A. Titchen, ed., 1-33, Elsevier Scientific Publishers Ireland Ltd. (1982).Google Scholar
  120. 120.
    E. R. Weibel and R. P. Bolender, Stereological techniques for electron microscopic morphometry in: “Principles and Techniques of Electron Microscopy,” M. A. Hayat, ed., 3:237, Van Rostrand Rheinold Co., New York (1973).Google Scholar
  121. 121.
    H. Haug, The significance of quantitative stereologic experimental procedures in pathology, Pathol. Res. Pract., 166:144 (1980).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • F. H. White
    • 1
  1. 1.Department of Anatomy and Cell BiologyUniversity of SheffieldSheffieldUK

Personalised recommendations