The Morphology of the Normal and Pathological Cell Membrane and Junctional Complexes of the Cochlea

  • Andrew Forge
Part of the NATO ASI Series book series (NSSA, volume 111)


Examination of the cell membranes in the cochlea is of some importance. Much of the normal functioning in the cochlea is dependent upon cell membrane properties and activities and on the presence of membrane specializations such as intercellular junctions. Further, there is evidence that in some forms of cochlear pathology effects on cell membranes are significant events. For example, the ototoxicity of aminoglycosides is thought to be related to specific interactions of the drugs with particular membrane lipids to produce alterations to membrane structure and function [1,2].


Tight Junction Hair Cell Apical Membrane Outer Hair Cell Lateral Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Schacht, Biochemistry of neomycin ototoxicity, J. Acoust. Soc. Am. 59:940 (1976).CrossRefGoogle Scholar
  2. 2.
    J. Schacht, Molecular mechanisms of drug-induced hearing loss, Abstract, Nobel Symposium 63 (1985).Google Scholar
  3. 3.
    J. E. Rash and C. S. Hudson, eds., “Freeze-Fracture: Methods, Artifacts, and Interpretations”, Raven Press, New York, (1979).Google Scholar
  4. 4.
    S. T. Appleyard, J. A. Witkowski, B. D. Ripley, D. M. Shotton and V. Dubowitz, A novel procedure for pattern analysis of features present on freeze-fractured plasma membranes, J. Cell Sci. 74:105 (1985).Google Scholar
  5. 5.
    P. Claude and D. A. Goodenough, Fracture faces of zonulae occludentes from ‘tight’ and ‘leaky’ epithelia, J. Cell Biol. 58:390 (1973).CrossRefGoogle Scholar
  6. 6.
    C. Peracchia, Structural correlates of gap junction permeation, Int. Rev. Cytol. 66:81 (1980).CrossRefGoogle Scholar
  7. 7.
    N. J. Severs and H. Robenek, Detection of Microdomains in biomembranes. An appraisal of recent developments in freeze-fracture cytochemistry, Biochem. Biophys. Acta 737:373 (1983).Google Scholar
  8. 8.
    K. Jahnke, The fine structure of freeze-fractured intercellular junctions in the guinea pig inner ear, Acta Otolaryngol. Suppl. 336 (1975).Google Scholar
  9. 9.
    S. Iurato, K. Franke, L. Luciano, G. Wermbter, E. Pannese and E. Reale, Fracture faces of the junctional complexes in the reticular membrane of the organ of Corti, Acta Otolaryngol. 81:36 (1976).CrossRefGoogle Scholar
  10. 10.
    E. Reale, L. Luciano, K. Franke, E. Pannese, G. Wermbter and S. Iurato, Intercellular junctions in the vascular stria and spiral ligament, J. Ultrastruct. Res. 53:284 (1975).CrossRefGoogle Scholar
  11. 11.
    R. Gulley and T. S. Reese, Intercellular junctions in the reticular lamina of the organ of Corti, J. Neurocytol. 5:479 (1976).CrossRefGoogle Scholar
  12. 12.
    R. L. Gulley and T. S. Reese, Regional specialization of the hair cell plasmalemma in the organ of Corti, Anat. Rec. 189:109 (1977).CrossRefGoogle Scholar
  13. 13.
    R. L. Gulley and T. S. Reese, Freeze-fracture studies on the synapses in the organ of Corti, J. Comp. Neur. 171:517 (1977).CrossRefGoogle Scholar
  14. 14.
    A. Forge, Freeze-fracture studies of the stria vascularis following administration of ethacrynic acid to guinea pigs, in: “Ototoxic Side-Effects of Diuretics”, R. Klinke, W. Lahn, H. Querfurth and J. Scholtholt, eds. Scandinavian Audiology, Suppl. 14:173 (1981).Google Scholar
  15. 15.
    A. Forge, Electron microscopy of the stria vascularis and its response to etacrynic acid. A study using electron dense tracers and extracellular surface markers, Audiol. 20:273 (1981).CrossRefGoogle Scholar
  16. 16.
    A. Forge, Gap junctions in the stria vascularis and effects of ethacrynic acid, Hearing Res. 13:189 (1984).CrossRefGoogle Scholar
  17. 17.
    A. Forge, Cholesterol distribution in cells of the stria vascularis of the mammalian cochlea and some effects of ototoxic diuretics, J. Cell Sci. (in Press).Google Scholar
  18. 18.
    A. Forge, Outer hair cell loss and supporting cell expansion following chronic gentamicin treatment, Hearing Res. (in press).Google Scholar
  19. 19.
    J. Santos-Sacchi and P. Dallos, Intercellular communication in the supporting cells of the organ of Corti, Hearing Res. 9:317 (1983).CrossRefGoogle Scholar
  20. 20.
    A. Flock, Mechanical properties of hair cells, Abstract, Nobel Symposium 63 (1985).Google Scholar
  21. 21.
    J. R. Sommer, P. C. Dolber and I. Taylor, Filipinserol complexes in the membranes of cardiac muscle, J. Ultrastruct. Res. 80:98 (1982).CrossRefGoogle Scholar
  22. 22.
    T. P. Kerr, M. D. Ross and S. A. Ernst, Cellular localization of Na+, K+-ATPase in the mammalian cochlear duct: significance for cochlear fluid balance, Am. J. Otolaryngol. 3:332 (1982).CrossRefGoogle Scholar
  23. 23.
    T. Konishi, P. E. Hamrick and P. T. Walsh, Ion transport in the guinea pig cochlea. I. Potassium and sodium transport, Acta Otolaryngol. 86:22 (1978).CrossRefGoogle Scholar
  24. 24.
    O. Sterkers, G. Saumon, P. Tran Ba Huy, and C. Amiel, K, Cl and H2O entry in endolymph, perilymph and cerebrospinal fluid of the rat, Am. J. Physiol. 243:F173 (1982).Google Scholar
  25. 25.
    S. K. Bosher, The nature of the ototoxic actions of ethacrynic acid upon the mammalian endolymph system. I. Function aspects, Acta Otolaryngol. 89:407 (1980).CrossRefGoogle Scholar
  26. 26.
    S. K. Bosher, The nature of the ototoxic actions of ethacrynic acid on the mammalian endolymph system. II. Structural-functional correlates in the stria vacularis, Acta Otolaryngol. 90:40 (1980).CrossRefGoogle Scholar
  27. 27.
    K. E. Rarey and M. D. Ross, A survey of the effects of loop diuretics on the zonulae occludentes of the perilymphendolymph barrier by freeze fracture, Acta Otolaryngol. 94:307 (1982).CrossRefGoogle Scholar
  28. 28.
    D. R. Pitelka and B. N. Taggart, Mechanical tension induces lateral movement of intramembrane components of the tight junction: studies on mouse mammary cells in culture, J. Cell Biol. 96:606 (1983).CrossRefGoogle Scholar
  29. 29.
    E. Page and Y. Shibata, Permeable junctions between cardiac cells, Ann. Rev. Physiol. 43:431 (1981).CrossRefGoogle Scholar
  30. 30.
    N. Hirokawa and L. G. Tilney, Interactions between actin filaments and between actin filaments and membranes in quick-frozen and deeply etched hair cells of the chick ear, J. Cell Biol. 95:249 (1982).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Andrew Forge
    • 1
  1. 1.Institute of Laryngology and OtologyLondonUK

Personalised recommendations