A Pathway for the Interaction of Stress and Noise Influences on Hearing

  • Harold A. Dengerink
  • John W. Wright
  • Joan E. Dengerink
  • Josef M. Miller
Part of the NATO ASI Series book series (NSSA, volume 111)


Threshold shifts following noise exposure, whether temporary or permanent, are frequently described as being variable [1,2]. Such threshold shifts following noise exposure differ markedly from individual to individual. Temporary threshold shifts (TTS) observed for the same individual after repeated exposure to the same noise are also variable. This variability, even with the same listener exposed to sounds with identical physical parameters, implies that noise may interact with other variables to influence hearing acuity. A variety of other variables may be likely candidates for interaction with noise, including environmental and body temperature [3,4], whole body vibration [5], and chemical agents [3,6].


Noise Exposure Threshold Shift Vasoactive Agent Peripheral Vasoconstriction Laser Doppler Flowmeter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Melnick, Temporary and permanent threshold shifts, in: “Noise and Audiology,” D. M. Lipscomb, ed., University Park Press, Baltimore (1978).Google Scholar
  2. 2.
    F. Lindgren and A. Axelsson, Interaction between noise-exposure and other factors assessed by clinical TTS studies. Paper presented at the XVII International Congress of Audiology, Santa Barbara, CA. (1984).Google Scholar
  3. 3.
    H. A. Dengerink, G. W. Trueblood, and J. E. Dengerink, The effects of ambient air temperature and cigarette smoking on noise-induced temporary threshold shifts, Audiology, 23:401 (1984).CrossRefGoogle Scholar
  4. 4.
    K. R Henry and R. A. Chole, Hypothermia protects the cochlea from noise damage, Hearing Res., 16:225 (1984).CrossRefGoogle Scholar
  5. 5.
    O. Manninen, A review of exposure combinations including noise: The meaning of complex exposures, Proceedings of the Fourth International Congress on Noise as a Public Health Problem: 637 (1983).Google Scholar
  6. 6.
    K. R. Henry, Effects of noise, hypothermia and barbiturate on cochlear electrical activity, Audiology, 19:44 (1980).CrossRefGoogle Scholar
  7. 7.
    E. Borg, Tail artery response to sound in the unanesthetized rat, Acta Physiol. Scand., 100:129 (1976).CrossRefGoogle Scholar
  8. 8.
    E. Borg, Physiological aspects of the effects of sound on man and animals, Acta Otolaryngol. Suppl., 360:80 (1979).Google Scholar
  9. 9.
    P. Thompson, Noise-induced temporary threshold shifts: The effects of anticipatory stress and coping strategies, unpublished doctoral dissertation, Washington State University, Pullman, WA. (1983).Google Scholar
  10. 10.
    J. E. Dengerink, H. A. Dengerink, and G. D. Chermak, Personality and vascular responses as predictors of temporary threshold shift, Ear and Hearing., 3:196 (1982).CrossRefGoogle Scholar
  11. 11.
    G. Jansen, Effects of noise on physiological state, ASHA Reports, 4:89 (1969).Google Scholar
  12. 12.
    G. Jansen, Relation between temporary threshold shift and peripheral circulatory effects of sound, in: “Physiological Effects of Noise,” B. L. Welch and A. M. Welch, eds., Plenum Press, New York (1979).Google Scholar
  13. 13.
    H. A. Dengerink and J. E. Dengerink, The interaction of stress and noise on auditory measures, in: Hearing Research and Theory,” J. V. Tobias and E. D. Shubert, eds., Academic Press, New York (1986).Google Scholar
  14. 14.
    J. E. Dengerink, F. Lindgren, A. Axelsson, and H. A. Dengerink, The effects of smoking and exercise on temporary threshold shifts, Paper presented at the meetings of the American Speech and Hearing Association, San Francisco, CA (1984).Google Scholar
  15. 15.
    C. Muchnik, M. Hildesheimer, L. Nedel, and M. Rubenstein, Influence of catecholamines on cochlear action potentials, Arch Otolaryngol., 109:530 (1983).CrossRefGoogle Scholar
  16. 16.
    J. E. Hawkins, The role of vasoconstriction in noise-induced hearing loss, Ann. Otorhinolaryngol., 80:903 (1971).Google Scholar
  17. 17.
    W. F. Ganong, The brain renin-angiotensin system, in: “Brain Peptides,” D. T. Kreiger, M. J. Brownstein, and J. B. Martin, eds., John Wiley and Sons, New York (1983).Google Scholar
  18. 18.
    A. K. Johnson, Neurobiology of the periventricular tissue surrounding the anteroventral third ventricle (AV3V) and its role in behavior, in: “Circulation, Neurobiology, and Behavior,” O. A. Smith, R. A. Galosy, and S. M. Weiss, eds., Elsevier Science Publishing, New York (1982).Google Scholar
  19. 19.
    M. E. Blair, E. O. Feigl, and O. A. Smith, Elevations of plasma serum activity during avoidance performance in baboons, Am. J. Physiol., 231:772 (1976).Google Scholar
  20. 20.
    J. W. Wright. H. A. Dengerink, P. Thompson, and S. Morseth, Plasma angiotensin II changes with noise exposure at three levels of ambient air temperature, J. Acoust. Soc. Am., 70:1353 (1981).CrossRefGoogle Scholar
  21. 21.
    M. D. Bailie, F. C. Rector, Jr., and D. W. Seldin, Angiotensin II in arterial and venous plasma and renal lymph in the dog, J. Clin. Invest., 50:119 (1971).CrossRefGoogle Scholar
  22. 22.
    H. A. Dengerink, J. W. Wright, P. Thompson, and J. E. Dengerink, Changes in plasma angiotensin II with noise exposure and their relationship to TTS, J. Acoust. Soc. Am., 72:276 (1982).CrossRefGoogle Scholar
  23. 23.
    J. W. Wright, H. A. Dengerink, J. M. Miller, and P. C. Goodwin, Potential role of angiotensin II in noise-induced increases in inner ear blood flow, Hearing Res., 17:41 (1985).CrossRefGoogle Scholar
  24. 24.
    S. L. Morseth, H. A. Dengerink, and J. W. Wright, Effect of Impulse noise on water consumption and blood pressure in the female rat, Physiol. and Beh., 34:1013 (1985).CrossRefGoogle Scholar
  25. 25.
    J. M. Miller, N. J. Marks, and P. C. Goodwin, Laser Doppler measurements of cochlear blood flow, Hearing Res., 11:385 (1985).CrossRefGoogle Scholar
  26. 26.
    C. Muchnik, M. Hildesheimer, and M. Rubenstein, Effect of emotional stress on hearing, Arch. Otorhinolaryngol., 228:295 (1980).CrossRefGoogle Scholar
  27. 27.
    C. Muchnik, M. Hildesheimer, and M. Rubenstein, Effect of catecholamines on perilymph Po2, Arch. Otolaryngol., 110:518 (1984).CrossRefGoogle Scholar
  28. 28.
    J. B. Snow and F. Suga, Control of cochlear blood flow, in: “Vascular Disorders and Hearing Defects,” A. J. deLorenzo, ed., University Park Press, Baltimore (1972).Google Scholar
  29. 29.
    F. Suga and J. B. Snow, Cholinergic control of cochlear blood flow, Amer. Otol., 78:1081 (1969).Google Scholar
  30. 30.
    A. Slob, A. Wink, and J. J. Radder, The effect of acute noise exposure on the excretion of corticosteroids, adrenalin and noradrenalin in man, Int. Arch. Arbeitsmed., 31:225 (1973).CrossRefGoogle Scholar
  31. 31.
    L. Andren, L. Hansson, R. Eggertsen, T. Hedner, and B. E. Karlberg, Circulatory effects of noise, Acta Med. Scand., 213:31 (1983).CrossRefGoogle Scholar
  32. 32.
    L. Andren, G. Lindstedt, M. Bjorkman, K. O. Borg and L. Hansson, Effect of noise on blood pressure and stress hormones, Clin. Sci., 62:137 (1982).Google Scholar
  33. 33.
    B. Metz, G. Brandenberger, and M. Follenius, Endochrine response to acoustic stresses, in: “Environmental Endochrinology,” I. Assenmacher, and D. S. Farner, eds., Springer Verlag, New York (1977).Google Scholar
  34. 34.
    M. Follenius, G. Brandenberger, C. Lecornu, M. Simeoni, and B. Reinhardt, Plasma catecholamines and pituitary adrenal hormones in response to noise exposure, Eur. J. Appl. Physiol., 43:253 (1980).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Harold A. Dengerink
    • 1
  • John W. Wright
    • 1
  • Joan E. Dengerink
    • 2
  • Josef M. Miller
    • 3
  1. 1.Department of PsychologyWashington State UniversityPullmanUSA
  2. 2.Department of SpeechWashington State UniversityPullmanUSA
  3. 3.Kresge Hearing Research InstituteUniversity of MichiganAnn ArborUSA

Personalised recommendations