Advertisement

Synaptology of the Cochlea: Different Types of Synapse, Putative Neurotransmitters and Physiopathological Implications

  • R. Pujol
  • M. Lenoir
  • M. Eybalin
Part of the NATO ASI Series book series (NSSA, volume 111)

Abstract

This chapter reviews recent neuroanatomical findings concerning the cochlea. First, we outline the general pattern of cochlear innervation; then the different types of synapse within the organ of Corti are briefly described, and morphological indications about putative neurotransmitters are also included, when available. Finally, possible physiopathological implications relevant to noise-induced hearing loss are discussed.

Keywords

Hair Cell Noise Exposure Outer Hair Cell High Performance Liquid Chromato Acoustic Trauma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. A. Altschuler, M. H. Parakkal, J. A. Rubio, D. W. Hoffman, and J. Fex, Enkephalin-like immunoreactivity in the guinea pig organ of Corti: ultrastructural and lesion studies, Hearing Res., 16:17 (1984).CrossRefGoogle Scholar
  2. 2.
    R. A. Altschuler, D. W. Hoffman, K. A. Reeks, and J. Fex, Localization of dynorphin B-like and alpha-neoendorphin-like immunoreactivities in the guinea pig organ of Corti, Hearing Res., 17:249 (1985).CrossRefGoogle Scholar
  3. 3.
    R. A. Altschuler, B. Kachar, J. A. Rubio, M. H. Parakkal, and J. Fex, Immunocytochemical localization of choline acetyltransferase-like immunoreactivity in the guinea pig cochlea, Brain Res., 338:1 (1985).CrossRefGoogle Scholar
  4. 4.
    D. Bodian, Electron microscopic atlas of the simian cochlea, Hearing Res., 9:201 (1983).CrossRefGoogle Scholar
  5. 5.
    M. C. Brown, A. L. Nuttall, and R. I. Masta, Intracellular recordings from cochlear inner hair cells: effects of stimulation of the crossed olivocochlear efferents, Science, 222:69 (1983).CrossRefGoogle Scholar
  6. 6.
    W. E. Brownell, Microscopic observation of cochlear hair cell motility, Scan. Electr. Microsc., 111:1401 (1984).Google Scholar
  7. 7.
    E. Carlier and R. Pujol, Sectioning of the efferent bundle decreases cochlear frequency selectivity, Neurosci. Lett., 28:101 (1982).CrossRefGoogle Scholar
  8. 8.
    A. R. Cody and B. M. Johnstone, Temporary threshold shift modified by binaural acoustic stimulation, Hearing Res., 6:199 (1982).CrossRefGoogle Scholar
  9. 9.
    C. W. Cotman, A. Foster, and T. Lanthorn, An overview of glutamate as a neurotransmitter, in: “Glutamate as a Neurotransmitter,” eds., G. di Chiara, and G. L. Gombos, pp. 1–27. Raven Press, New York (1981).Google Scholar
  10. 10.
    J. T. Coyle, Neurotoxic action of kainic acid, J. Neurochem., 41:1 (1983).CrossRefGoogle Scholar
  11. 11.
    O. Densert, Adrenergic innervation in the rabbit cochlea, Acta Otolaryngol., 78:345 (1974).CrossRefGoogle Scholar
  12. 12.
    O. Densert and A. Flock, An electron-microscopic study of adrenergic innervation in the cochlea, Acta Otolaryngol., 77:185 (1974).CrossRefGoogle Scholar
  13. 13.
    M. J. Drescher, D. G. Drescher, and J. E. Medina, Effect of sound stimulation at several levels on concentrations of primary amines, including neurotransraitter candidates, in perilymph of the guinea pig inner ear, J. Neurochem., 41:309 (1983).CrossRefGoogle Scholar
  14. 14.
    H. Engstrom, Electron microscopic study of the receptor cells of the organ of Corti, in: “Neural Mechanism of the Auditory and Vestibular System,” eds., G. L. Rasmussen and S. F. Windle, pp. C. C. Thomas, Springfield, Illinois (1960).Google Scholar
  15. 15.
    M. Eybalin and R. Pujol, A radioautographic study of [’H] L-glutamate and [’H] L-glutamine uptake in the guinea pig cochlea, Neuroscience, 9:863 (1983).CrossRefGoogle Scholar
  16. 16.
    M. Eybalin and R. Pujol, Immunofluorescence with metenkephalin and leuenkephalin antibodies in the guinea pig cochlea, Hearing Res., 13:135 (1984).CrossRefGoogle Scholar
  17. 17.
    M. Eybalin and R. Pujol, Immunoelectron microscopic localization of choline acetyltransferase in two types of efferent (olivo-cochlear) synapses in the rat organ of Corti, Submitted to Exp. Br. Res., (1985).Google Scholar
  18. 18.
    M. Eybalin, A. Calas, and R. Pujol, Radioautographic study of the sympathetic fibers in the cochlea, Acta Otolaryngol., 96:69 (1983).CrossRefGoogle Scholar
  19. 19.
    M. Eybalin, A. Cupo, and R. Pujol, Metenkephalin characterization in the cochlea: high performance liquid chromatography and immunoelectron microscopy, Brain Res., 305:313 (1984).CrossRefGoogle Scholar
  20. 20.
    M. Eybalin, A. Cupo, and R. Pujol, Metenkephalin-Arg6-Gly7-Leu in the organ of Corti: high performance liquid chromatography and immunoelectron microscopy, Brain Res., 331:389 (1985).CrossRefGoogle Scholar
  21. 21.
    M. Eybalin, L. Abou-Madi, J. Rossier, and R. Pujol, Electron microscopic localization of N-terminal proenkephalin (synenkephalin) immunostaining in the guinea pig organ of Corti, Brain Res., in press (1985).Google Scholar
  22. 22.
    J. Fex and R. A. Altschuler, Enkephalin-like immunoreactivity of olivocochlear nerve fibers in cochlea of guinea pig and cat, Proc. Natl. Acad. Sci. USA, 78:12b55 (1981).CrossRefGoogle Scholar
  23. 23.
    J. Fex and R. A. Altschuler, Glutamic acid decarboxylase immunoreactivity of olivocochlear neurons in the organ of Corti of guinea pig and rat, Hearing Res., 15:123 (1984).CrossRefGoogle Scholar
  24. 24.
    E. Hultcrantz, A. L. Nuttall, M. C. Brown, and M. Lawrence, The effect of cervical sympathectomy on cochlear electrophysiology, Acta Otolaryngol., 94:439 (1982).CrossRefGoogle Scholar
  25. 25.
    S. Iurato, Efferent fibers to the sensory cells of Corti’s organ, Exp. Cell Res., 27:162 (1962).CrossRefGoogle Scholar
  26. 26.
    S. Iurato, Efferent innervation of the cochlea, in: “Auditory System, Anatomy-Physiology (Ear), Handbook of Sensory Physiology, Vol. V/1,” eds., W. D. Keidel and W. D. Neff, Springer Verlag, Berlin (1974).Google Scholar
  27. 27.
    N. Y. S. Kiang, J. M. Rho, C. C. Nothrop, M. C. Liberman, and D. K. Ryugo, Hair-cell innervation by spiral ganglion cells in adult cats, Science, 217:175 (1982).CrossRefGoogle Scholar
  28. 28.
    R. Klinke and N. Galley, Efferent innervation of vestibular and auditory receptors, Physiol. Rev., 54:316 (1974).Google Scholar
  29. 29.
    M. Lenoir and R. Pujol, Sensitive period to acoustic trauma in the rat pup cochlea, Acta Otolaryngol., 89:317 (1980).CrossRefGoogle Scholar
  30. 30.
    M. Lenoir, A. Shnerson, and R. Pujol, Cochlear receptor development in the rat with emphasis on synaptogenesis, Anat. Embryol., 160:253 (1980).CrossRefGoogle Scholar
  31. 31.
    J. I. Lehtosalo, J. Ylikoski, L. Eranko, O. Eranko, and P. Panula, Immunohistochemical localization of unique enkephalin sequences contained in preproenkephalin A in the guinea pig cochlea, Hearing Res., 16:101 (1984).CrossRefGoogle Scholar
  32. 32.
    M. C. Liberman, Morphological differences among radial afferent fibers in the cat cochlea: an electron-microscopic study of serial sections, Hearing Res., 3:45 (1980).CrossRefGoogle Scholar
  33. 33.
    M. C. Liberman, Efferent synapses in the inner hair cell area of the cat cochlea: an electron-microscopic study of serial sections. Hearing Res., 3:189 (1980).CrossRefGoogle Scholar
  34. 34.
    M. C. Liberman and N. Y. S. Kiang, Acoustic trauma in cats, Cochlear pathology and auditory-nerve activity, Acta Otolaryngol., Suppl. 358 (1978).Google Scholar
  35. 35.
    M. C. Liberman and M. J. Mulroy, Acute and chronic effects of acoustic trauma: cochlear pathology and auditory nerve pathophysiology, in: “New Perspectives on Noise-Induced Hearing Loss,” eds., R. P. Hamernik, D. Henderson, and R. Salvi, Raven Press, New York (1982).Google Scholar
  36. 36.
    J. H. Mills, Effects of noise on auditory sensitivity, psychophysical tuning curves, and suppression, in: “New Perspectives on Noise-Induced Hearing Loss,” eds., R. P. Hamernik, D. Henderson, and R. Salvi, Raven Press, New York (1982).Google Scholar
  37. 37.
    D. K. Morest and B. A. Bohne, Noise-induced degeneration in the brain and representation of inner and outer hair cells, Hearing Res., 9:145 (1983).CrossRefGoogle Scholar
  38. 38.
    D. Morrisson, R. A. Schindler, and J. Wersall, A quantitative analysis of the afferent innervation of the organ of Corti in guinea Pig, Acta Otolaryngol., 79:11 (1975).CrossRefGoogle Scholar
  39. 39.
    D. C. Mountain, C. D. Geisler, and A. E. Hubbard, Stimulation of efferents alters the cochlear microphonic and the sound-induced resistance changes measured in scala media of the guinea pig, Hearing Res., 3:231 (1980).CrossRefGoogle Scholar
  40. 40.
    J. B. Nadol, Jr., Serial section reconstruction of the neural poles of hair cells in the human organ of Corti, I. Inner hair cells, Laryngoscope, 93:599 (1983).CrossRefGoogle Scholar
  41. 41.
    J. B. Nadol, Jr., Serial section reconstruction of the neural poles of hair cells in the human organ of Corti, II. Outer hair cells, Laryngoscope, 93:780 (1983).CrossRefGoogle Scholar
  42. 42.
    T. Omata, I. Ohtani, K. Ohtsuki, Y. Ogawa, and J. Ouchi, Electron microscopical and histochemical studies of outer hair cells in acoustically exposed rabbits, Arch. Otorhinolaryngol., 222:127 (1979).CrossRefGoogle Scholar
  43. 43.
    R. E. Perkins and D. K. Morest, A study of cochlear innervation patterns in cats and rats with the Golgi method and Nomarski optics, J. Comp. Neurol., 163:129 (1975).CrossRefGoogle Scholar
  44. 44.
    R. Pujol and M. Lenoir, The four types of synapse in the organ of Corti, in: “Neurobiology of Hearing: The Cochlea,” eds., R. A. Altschuler, D. W. Hoffman, and R. P. Bobbin, Raven Press, New York, in press (1985).Google Scholar
  45. 45.
    R. Pujol and A. Sans, Synaptogenesis in the mammalian inner ear, in: “Advances in Neural and Behavioral Development, V. 2, Auditory Development,” ed., R. N. Aslin, Ablex Publ., Norwood, N.J., in press (1985).Google Scholar
  46. 46.
    R. Pujol, E. Carlier, and C. Devigne, Different patterns of cochlear innervation during the development in the kitten, J. Comp. Neurol., 117:529 (1978).CrossRefGoogle Scholar
  47. 47.
    R. Pujol, M. Lenoir, D. Robertson, M. Eybalin, and B. M. Johnstone, Kainic acid selectivity alters auditory dendrites connected with cochlear inner hair cells, Hearing Res., 18:145 (1985).CrossRefGoogle Scholar
  48. 48.
    R. Rajan and B. M. Johnstone, Crossed cochlear influences on monaural temporary threshold shifts, Hearing Res., 9:279 (1983)CrossRefGoogle Scholar
  49. 49.
    R. Rajan and B. M. Johnstone, Residual effects in monaural temporary threshold shifts to pure tones, Hearing Res., 12:185 (1983).CrossRefGoogle Scholar
  50. 50.
    D. Robertson, Functional significance of dendritic swelling after loud sounds in the guinea pig cochlea, Hearing Res., 9:263 (1983).CrossRefGoogle Scholar
  51. 51.
    E. L. Rodriguez-Echandia, An electron microscopic study on the cochlear innervation. I. The receptoneural junctions at the outer hair cells, Zeitschift für Zellforschung, 78:30 (1967).CrossRefGoogle Scholar
  52. 52.
    K. Saito, Fine structure of the sensory epithelium of guinea pig organ of Corti: subsurface cisternae and lamellar bodies in outer hair cells, Cell Tissue Res., 229:467 (1980).Google Scholar
  53. 53.
    W. F. Sewell, C. H. Norris, M. Tachibana, and P. S. Guth, Detection of an auditory nerve-activating substance, Science, 202:910 (1978).CrossRefGoogle Scholar
  54. 54.
    A. Shnerson, C. Devigne, and R. Pujol, Age-related changes in the C57BL/6J mouse cochlea, II. Ultrastructural findings, Dev. Brain Res., 37:373 (1982).Google Scholar
  55. 55.
    J. H. Siegel and D. O. Kim, Efferent neural control of cochlear mechanics? Olivocochlear bundle stimulation affects cochlear biomechanical nonlinearity, Hearing Res., 6:171 (1982).CrossRefGoogle Scholar
  56. 56.
    J. H. Siegel and D. O. Kim, Cochlear biomechanics: vulnerability to acoustic trauma and other alterations as seen in neural responses and ear-canal sound pressure, in: “New Perspectives on Noise-Induced Hearing Loss,” eds., R. P. Hamernik, D. Henderson, and R. Salvi, Raven Press, New York (1982).Google Scholar
  57. 57.
    C. A. Smith and F. S. Sjostrand, Structure of the nerve endings on the external hair cells of the guinea pig cochlea as studied by serial sections, J. Ultrastruct. Res., 5:523 (1961).CrossRefGoogle Scholar
  58. 58.
    H. M. Sobkowicz, J. L. Rose, G. E. Scott, and S. M. Slapnick, Ribbon synapses in the developing intact and cultured organ of Corti in the mouse, J. Neurosci., 7:942 (1982).Google Scholar
  59. 59.
    H. Spoendlin, The organization of the cochlear receptor, Adv. Oto-Rhino-Laryngol., 13:1 (1966).Google Scholar
  60. 60.
    H. Spoendlin, Primary structural changes in the organ of Corti after acoustic overstimulation, Acta Otolaryngol., 71:166 (1971).CrossRefGoogle Scholar
  61. 61.
    H. Spoendlin, Neural connections of the outer hair cell system, Acta Otolaryngol., 87:381 (1979).CrossRefGoogle Scholar
  62. 62.
    H. Spoendlin and W. Lichtensteiger, The adrenergic innervation of the labyrinth, Acta Otolaryngol., 61:423 (1966).CrossRefGoogle Scholar
  63. 63.
    W. B. Warr and J. J. Guinan, Efferent innervation of the organ of Corti: two separate systems, Brain Res., 173:152 (1979).CrossRefGoogle Scholar
  64. 64.
    J. S. White and W. B. Warr, The dual origins of the olivocochlear bundle in the albino rat, J. Comp. Neurol., 219:203 (1983).CrossRefGoogle Scholar
  65. 65.
    J. Ylikoski and J. Lehtosalo, Neurochemical basis of auditory fatigue: a new hypothesis, Acta Otolaryngol., 99:353 (1985).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • R. Pujol
    • 1
  • M. Lenoir
    • 1
  • M. Eybalin
    • 1
  1. 1.Laboratoire de Neurobiologie de I’AuditionINSERM-U.254Montpellier CedexFrance

Personalised recommendations