Advertisement

The Curious Half-Octave Shift: Evidence for a Basalward Migration of the Traveling-Wave Envelope with Increasing Intensity

  • Dennis McFadden
Part of the NATO ASI Series book series (NSSA, volume 111)

Abstract

Following exposure to an intense tonal stimulus, there may be no temporary threshold shift (TTS) at the exposure frequency, even though there is considerable hearing loss at a higher test frequency. This effect-commonly known as the half-octave shift in TTS-is among the oldest, best known, and most widely cited facts of psychoacoustics, yet it stands without a generally accepted explanation. This paper has three primary purposes: (1) to review the physiological findings apparently relevant to this upward shift of maximum effect; (2) to demonstrate that half octave-like shifts are not unique to TTS experiments, but rather, they can be found in data obtained in a wide array of psychophysical tasks not involving auditory fatigue; and (3) to present a possible explanation of the upward shift which accounts for many of the existing facts, and thus appears worthy of serious consideration by both theorists and experimentalists.

Keywords

Hair Cell Basilar Membrane Tuning Curve Acoustic Trauma Primary Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. F. Rawdon-Smith, Auditory fatigue, Brit. J. Psychol., 25:77 (1934).Google Scholar
  2. 2.
    A. W. Ewing and T. S. Littler, Auditory fatigue and adaptation, Brit. J. Psychol., 25:284 (1935).Google Scholar
  3. 3.
    H. B. Perlman, Acoustic trauma in man: clinical and experimental studies, Arch. Otolaryngol., 34:429 (1941).CrossRefGoogle Scholar
  4. 4.
    H. Davis, C. T. Morgan, J. E. Hawkins, Jr., R. Galambos, and F. W. Smith, Temporary deafness following exposure to loud tones and noise, Acta Oto-Laryngol., 88:4 (1950).Google Scholar
  5. 5.
    W. D. Ward, Damage-risk criteria for line spectra, J. Acoust. Soc. Am., 34:1610 (1962).CrossRefGoogle Scholar
  6. 6.
    A. Cohen and K. C. Baumann, Temporary hearing losses following exposure to pronounced single-frequency components in broadband noise, J. Acoust. Soc. Am., 36:1167 (1964).CrossRefGoogle Scholar
  7. 7.
    C. D. Geisler, W. S. Rhode, and D. T. Kennedy, Responses to tonal stimuli of single auditory nerve fibers and their relationship to basilar membrane motion in the squirrel monkey, J. Neurophysiology, 37:1156 (1974).Google Scholar
  8. 8.
    B. L. Lonsbury-Martin, and M. B. Meikle, Neural correlates of auditory fatigue: frequency-dependent changes in activity of single cochlear nerve fibers, J. Neurophysiology, 41:987 (1978).Google Scholar
  9. 9.
    D. McFadden and M. F. Yama, Upward shifts in the masking pattern with increasing masker intensity, J. Acoust. Soc. Am., 74:119 (1983).Google Scholar
  10. 10.
    P. Dallos, Response characteristics of mammalian cochlear hair cells, J. Neuroscience, 5:1591 (1985).Google Scholar
  11. 11.
    J. H. Mills, J. D. Osguthorpe, C. K. Burdick, J. H. Patterson, and B. Mozo, Temporary threshold shifts produced by exposure to low-frequency noises, J. Acoust. Soc. Am., 73:918 (1983).CrossRefGoogle Scholar
  12. 12.
    A. Wright, Dimensions of the cochlear stereocilia in man and in the guinea pig, Hearing Research, 13:89 (1984).CrossRefGoogle Scholar
  13. 13.
    D. McFadden, Intense sounds may alter the mechanical properties of the cochlear partition, J. Acoust. Soc. Am., 74:447 (1983).CrossRefGoogle Scholar
  14. 14.
    W. E. Brownell, C. R. Bader, D. Bertrand, and Y. De Ribaupierre, Y. Ribaupierre, Evoked mechanical responses of isolated cochlear outer hair cells, Science, 227:194 (1985).CrossRefGoogle Scholar
  15. 15.
    S. S. Stevens, The relation of pitch to intensity, J. Acoust. Soc. Am., 6, 150 (1935).CrossRefGoogle Scholar
  16. 16.
    R. F. Galambos, C. D. Geisler, H. Davis, and J. L. Zwislocki, Discussion, in: “The Physiology of the Auditory System,” M. B. Sachs ed., National Educational Consultants, Baltimore (1971).Google Scholar
  17. 17.
    A. E. Hubbard and C. D. Geisler, A hybrid-computer model of the cochlear partition, J. Acoust. Soc. Am., 51:1895 (1972).CrossRefGoogle Scholar
  18. 18.
    P. Dallos, The auditory periphery, Academic Press, New York (1973).Google Scholar
  19. 19.
    D. O. Kim, Role of place cue in simple-tone pitch perception assessed with temporary threshold shift, J. Acoust. Soc. Am., 56, S44, (1974) and unpublished manuscript.Google Scholar
  20. 20.
    D. O. Kim, Discussion, in: “New Perspectives on Noise-Induced Hearing Loss,” R. P. Hamernik, D. Henderson, and R. Salvi eds., Raven Press, New York (1982).Google Scholar
  21. 21.
    H. Duifhuis, Cochlear nonlinearity and second filter-a psychophysical evaluation, in: “Psychophysics and Physiology of Hearing,” E. F. Evans and J. P. Wilson eds., Academic Press, New York (1977).Google Scholar
  22. 22.
    L. L. M. Vogten, Simultaneous pure-tone masking: the dependence of masking asymmetries on intensity, J. Acoust. Soc. Am., 63: 1509 (1978a).CrossRefGoogle Scholar
  23. 23.
    S. D. Anderson, Some ECMR properties in relation to other signals from the auditory periphery, Hearing Research, 2:273 (1980).CrossRefGoogle Scholar
  24. 24.
    D. McFadden and H. S. Plattsmier, Exposure-induced loudness shifts and threshold shifts, in: “New Perspectives on Noise-Induced Hearing Loss,” R. P. Hamernik, D. Henderson, and R. Salvi eds., Raven Press, New York (1982).Google Scholar
  25. 25.
    D. McFadden and H. S. Plattsmier, Frequency patterns of TTS for different exposure intensities, J. Acoust. Soc. Am., 74:1178 (1983).CrossRefGoogle Scholar
  26. 26.
    M. C. Liberman, Single-neuron labeling and chronic cochlear pathology, I. Threshold shift and characteristic-frequency shift, Hearing Research, 16:33 (1984).CrossRefGoogle Scholar
  27. 27.
    H. Davis, An active process in cochlear mechanics, Hearing Research, 9:79 (1983).CrossRefGoogle Scholar
  28. 28.
    D. Robertson, A. R. Cody, G. Bredberg, and B. M. Johnstone, Response properties of spiral ganglion neurons in cochleas damaged by direct mechanical trauma, J. Acoust. Soc. Am., 67: 1295 (1980b).CrossRefGoogle Scholar
  29. 29.
    G. Ehret, Comparative psychoacoustics: perspectives of peripheral sound analysis in mammals, Naturwissenschaften, 64:461 (1977).CrossRefGoogle Scholar
  30. 30.
    W. S. Rhode, Observations of the vibration of the basilar membrane in squirrel monkeys using the Mossbauer technique, J. Acoust. Soc. Am., 49:1218 (1971).CrossRefGoogle Scholar
  31. 31.
    W. S. Rhode, Some observations on cochlear mechanics, J. Acoust. Soc. Am., 64:158 (1978).CrossRefGoogle Scholar
  32. 32.
    D. G. B. Leonard and S. M. Khanna, Histological evaluation of damage in cat cochleas used for measurement of basilar membrane mechanics, J. Acoust. Soc. Am., 75:515 (1984).CrossRefGoogle Scholar
  33. 33.
    P. M. Sellick, R. Patuzzi, and B. M. Johnstone, Measurement of basilar membrane motion in the guinea pig using the Mossbauer technique, J. Acoust. Soc. Am., 72:131 (1982).CrossRefGoogle Scholar
  34. 34.
    E. L. LePage and B. M. Johnstone, Nonlinear mechanical behaviour of the basilar membrane in the basal turn of the guinea pig cochlea, Hearing Research, 2:183 (1980).CrossRefGoogle Scholar
  35. 35.
    I. J. Russell and P. M. Sellick, Intracellular studies of hair cells in the mammalian cochlea, J. Physiol. (London) 284:261 (1978).Google Scholar
  36. 36.
    V. Honrubia and P. H. Ward, Longitudinal distribution of the cochlear microphonics inside the cochlear duct (guinea pig), J. Acoust. Soc. Am., 44:951 (1968).CrossRefGoogle Scholar
  37. 37.
    E. F. Evans, Frequency selectivity at high signal levels of single units in cochlear nerve and nucleus, in: “Psychophysics and Physiology of Hearing,” E. F. Evans and J. P. Wilson eds., Academic Press, New York (1977).Google Scholar
  38. 38.
    M. C. Liberman and M. J. Mulroy, Acute and chronic effects of acoustic trauma: Cochlear pathology and auditory nerve pathophysiology, in: “New Perspectives on Noise-Induced Hearing Loss,” R. P. Hamernik, D. Henderson, and R. Salvi, eds., Raven Press, New York (1982).Google Scholar
  39. 39.
    M. C. Liberman and N. Y.-S. Kiang, Single-neuron labeling and chronic cochlear pathology. IV. Stereocilia damage and alterations in rate-and phase-level functions, Hearing Research 16: 75 (1984).CrossRefGoogle Scholar
  40. 40.
    M. B. Sachs and P. J. Abbas, Rate versus level functions for auditory-nerve fibers in cats: tone-burst stimuli, J. Acoust. Soc. Am., 56:1835 (1974).CrossRefGoogle Scholar
  41. 41.
    P. J. Abbas and M. B. Sachs, Two-tone suppression in auditory-nerve fibers: extension of a stimulus-response relationship, J. Acoust. Soc. Am., 59:112 (1976).CrossRefGoogle Scholar
  42. 42.
    D. O. Kim and C. E. Molnar, A population study of cochlear nerve fibers: comparison of spatial distributions of average-rate and phase-locking measures of responses to single tones, J. Neurophysiology, 42:16 (1979).Google Scholar
  43. 43.
    A. R. Cody and B. M. Johnstone, Acoustic trauma: Single neuron basis for the ‘half-octave shift,’ J. Acoust. Soc. Am., 70:707 (1981)CrossRefGoogle Scholar
  44. 44.
    C. Mitchell, R. Brummett, and J. Vernon, Frequency effects of temporary N1 depression following acoustic overload, Arch. Otolaryngol., 103:117 (1977).CrossRefGoogle Scholar
  45. 45.
    D. Robertson, B. M. Johnstone, and T. J. McGill, Effects of loud tones on the inner ear: a combined electrophysiological and ultrastructural study, Hearing Research, 2:39 (1980).CrossRefGoogle Scholar
  46. 46.
    D. P. Gans, Computing auditory fatigue of the whole nerve action potential, J. Acoust. Soc. Am., 70:711 (1981).CrossRefGoogle Scholar
  47. 47.
    A. R. Cody and B. M. Johnstone, Single auditory neuron response during acute acoustic trauma, Hearing Research, 3:3 (1980).CrossRefGoogle Scholar
  48. 48.
    D. Robertson and B. M. Johnstone, Acoustic trauma in the guinea pig cochlea: early changes in ultrastructure and neural threshold, Hearing Research 3:167 (1980).CrossRefGoogle Scholar
  49. 49.
    P. J. Abbas, Recovering from long-term and short-term adaptation of the whole nerve action potential, J. Acoust. Soc. Am., 75:1541 (1984).CrossRefGoogle Scholar
  50. 50.
    D. Robertson and G. A. Manley, Manipulation of frequency analysis in the cochlear ganglion of the guinea pig, J. Comp. Physiol., 91:363 (1974).CrossRefGoogle Scholar
  51. 51.
    E. F. Evans, Auditory frequency selectivity and the cochlear nerve, in: Facts and Models in Hearing, E. Zwicker and E. Terhardt eds., Springer-Verlag, New York (1974).Google Scholar
  52. 52.
    D. Robertson, Effects of acoustic trauma on stereocilia structure and spiral ganglion cell tuning properties in the guinea pig cochlea, Hearing Research, 7:55–74 (1982).CrossRefGoogle Scholar
  53. 53.
    D. Robertson and B. M. Johnstone, Aberrant tonotopic organization in the inner ear damaged by kanamycin, J. Acoust. Soc. Am., 66:466 (1979).CrossRefGoogle Scholar
  54. 54.
    E. Van Heusden, Effects of acute noise trauma on cochlear response times in cats, in: “Psychophysical, Physiological and Behavioral Studies in Hearing,” G. van den Brink and F. A. Bilsen eds., Delft University Press, The Netherlands (1980).Google Scholar
  55. 55.
    R. L. Wegel and C. E. Lane, The auditory masking of one pure tone by another and its probable relation to the dynamics of the inner ear, Phys. Rev. 23:266 (1924).CrossRefGoogle Scholar
  56. 56.
    J. P. Egan and H. W. Hake, On the masking pattern of a simple auditory stimulus, J. Acoust. Soc. Am., 22:622 (1950).CrossRefGoogle Scholar
  57. 57.
    J. V. Tobias, Low-frequency masking patterns, J. Acoust. Soc. Am. 61:571 (1977).CrossRefGoogle Scholar
  58. 58.
    J. J. Zwislocki, E. Buining, and J. Glantz, Frequency distribution of central masking, J. Acoust. Soc. Am., 43:1267 (1968).CrossRefGoogle Scholar
  59. 59.
    L. L. M. Vogten, Low-level pure-tone masking: a comparison of ‘tuning curves’ obtained with simultaneous and forward masking, J. Acoust. Soc. Am., 63:1520 (1978b).CrossRefGoogle Scholar
  60. 60.
    M. Florentine and A. J. M. Houtsma, Tuning curves and pitch matches in a listener with a unilateral, low-frequency hearing loss, J. Acoust. Soc. Am., 73:961 (1983).CrossRefGoogle Scholar
  61. 61.
    A. E. Carney and D. A. Nelson, An analysis of psychophysical tuning curves in normal and pathological ears, J. Acoust. Soc. Am., 73:268 (1983).CrossRefGoogle Scholar
  62. 62.
    E. Zwicker and A. Jaroszewski, Inverse frequency dependence of simultaneous tone-on-tone masking patterns at low levels, J. Acoust. Soc. Am., 71:1508 (1982).CrossRefGoogle Scholar
  63. 63.
    W. A. Munson and M. B. Gardner, Loudness patterns-a new approach, J. Acoust. Soc. Am., 22:177 (1950).CrossRefGoogle Scholar
  64. 64.
    J. J. Zwislocki and E. Pirodda, On the adaptation, fatigue and acoustic trauma of the ear, Experientia, 8:279 (1952).CrossRefGoogle Scholar
  65. 65.
    R. H. Ehmer and B. J. Ehmer, Frequency pattern of residual masking by pure tones measured on the Bekesy audiometer, J. Acoust. Soc. Am., 46:1445 (1969).CrossRefGoogle Scholar
  66. 66.
    H. Fasti, Transient masking pattern of narrow band maskers, in: “Facts and MOdels in Hearing,” E. Zwicker and E. Terhardt, eds., Springer-Verlag, New York (1974).Google Scholar
  67. 67.
    E. Pirodda and A. R. Ceroni, Some experiments on temporary threshold shifts produced by short tones, Acta Otol. 85:191 (1978).Google Scholar
  68. 68.
    B. C. J. Moore, Psychophysical tuning curves measured in simultaneous and forward masking, J. Acoust. Soc. Am., 63:524 (1978).CrossRefGoogle Scholar
  69. 69.
    G. P. Widin and N. F. Viemeister, Intensive and temporal effects in pure-tone forward masking, J. Acoust. Soc. Am., 66, S9 (1979).CrossRefGoogle Scholar
  70. 70.
    G. Kidd, Jr. and L. L. Feth, Patterns of residual masking, Hearing Research, 5:49 (1981).CrossRefGoogle Scholar
  71. 71.
    E. M. Burns, Pure-tone pitch anomalies. I. Pitch-intensity effects and diplacusis, J. Acoust. Soc. Am., 72:1394 (1982).CrossRefGoogle Scholar
  72. 72.
    R. Shannon, Two-tone unmasking and suppression in a forward-masking situation, J. Acoust. Soc. Am., 59:1460 (1976).CrossRefGoogle Scholar
  73. 73.
    E. Terhardt, Pitch of pure tones: its relation to intensity, in: “Facts and Models in Hearing,” E. Zwicker and E. Terhardt eds., Springer-Verlag, New York (1974).Google Scholar
  74. 74.
    J. Verschuure and A. A. van Meeteren, The effect of intensity on pitch, Acustica, 32:33 (1975).Google Scholar
  75. 75.
    W. Jesteadt and D. L. Neff, A signal-detection-theory measure of pitch shifts in sinusoids as a function of intensity, J. Acoust. Soc. Am., 72:1812 (1982).CrossRefGoogle Scholar
  76. 76.
    S. N. Reger and D. M. Lierle, Changes in auditory acuity produced by low and medium intensity level exposures, Trans. Amer. Acad. Ophthal. Otolaryngol., 58:433 (1954).Google Scholar
  77. 77.
    I. J. Hirsh and R. C. Bilger, Auditory-threshold recovery after exposure to pure tones, J. Acoust. Soc. Am., 27:1186 (1955).CrossRefGoogle Scholar
  78. 78.
    W. Selters, Adaptation and fatigue, J. Acoust. Soc. Am., 36:2202 (1964).CrossRefGoogle Scholar
  79. 79.
    E. Young and M. B. Sachs, Recovery of detection probability following sound exposure: comparison of physiology and psychophysics, J. Acoust. Soc. Am., 54, 1544 (1973).CrossRefGoogle Scholar
  80. 80.
    J. D. Hood, Studies in auditory fatigue and adaptation, Acta Oto-Laryngol., 62:5 (1950).Google Scholar
  81. 81.
    J. H. Mills, R. M. Gilbert, and W. Y. Adkins, Temporary threshold shifts in humans exposed to octave bands of noise for 16 to 24 hours, J. Acoust. Soc. Am., 65:1238 (1979).CrossRefGoogle Scholar
  82. 82.
    D. McFadden and H. S. Plattsmier, Suprathreshold aftereffects of exposure to intense sound, in: “New Perspectives on Noise-Induced Hearing Loss,” R. P. Hamernik, D. Henderson and R. J. Salvi eds., Raven Press, New York (1982).Google Scholar
  83. 83.
    D. McFadden, Tinnitus: Facts, Theories and Treatments. National Academy Press, Washington, D.C. (1982).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Dennis McFadden
    • 1
  1. 1.Department of PsychologyUniversity of TexasAustinUSA

Personalised recommendations