Mechanical Changes in Stereocilia Following Overstimulation: Observations and Possible Mechanisms

  • James C. Saunders
  • Barbara Canlon
  • Ake Flock
Part of the NATO ASI Series book series (NSSA, volume 111)


Many experimental observations over the past decade have indicated that the role of stereocilia structure and function in cochlear hair-cell transduction is more complicated than previously thought. Among these recent observations are those that elucidated the cytoskeletal organization of the stereocilia and cuticular plate [21,81], and the extracellular structures that bind individual stereocilia together [6,50,51]. In addition, the kinetics of hair-cell physiology have been well described [7,9, 55] and the directional sensitivity of stereocilia movement on individual hair cells is now known [22,28,75]. Descriptions of static and dynamic stereocilia movement in the mammalian cochlea have recently been presented [23,38,75]; these data are critically important to our understanding of hair-cell function and dysfunction.


Hair Cell Actin Filament Noise Exposure Threshold Shift Sensory Hair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Angelborg and H. Engstrom, The normal organ of Corti. in: “Basic Mechanisms in Hearing,” A. R. Moller, ed., Academic Press, New York (1973).Google Scholar
  2. 2.
    B. A. Bohne, Healing of the noise-damaged inner ear, in: “Hearing and Davis: Essays Honoring Hallowell Davis,” S. K. Hirsh, D. H. Eldredge, I. J. Hirsh, and S. R. Silverman, eds., Washington University Press, St. Louis (1976).Google Scholar
  3. 3.
    E. Borg and B. Engstrom, Hearing thresholds in the rabbit: A behavioral and electrophysiological study, Acta Otolaryngol., 95:19 (1983).CrossRefGoogle Scholar
  4. 4.
    E. Borg and B. Engstrom, Damage to sensory hairs of inner hair cells after exposure to noise in rabbits without outer hair cells, Hear. Res., 10:1 (1983).CrossRefGoogle Scholar
  5. 5.
    B. Canlon, J. Miller and A. Flock, High intensity noise effects on stereocilia micromechanics, Abs. Assoc. Res. Otolaryngol., 8:50 (1985).Google Scholar
  6. 6.
    S. D. Comis, J. O. Pickles and M. P. Osborne, Osmium tetroxide post-fixation in relation to the crosslinkage and spatial organization of stereocilia in the guinea pig cochlea. J. Neurocytol., 14:113 (1985).CrossRefGoogle Scholar
  7. 7.
    D. P. Corey and A. J. Hudspeth, Kinetics of the receptor current in bullfrog saccular hair cells, J. Neurosci., 5:962 (1983).Google Scholar
  8. 8.
    D. A. Cotanche, L. G. Tilney and J. C. Saunders, SEM analysis of pure-tone overstimulation in the developing avian cochlea. Abs. Assoc. Res. Otolaryngol., 7:55 (1984).Google Scholar
  9. 9.
    P. Dallos, J. Santos-Sacchi and A. Flock, Intracellular recordings from cochlear outer hair cells. Science, 218:582 (1982).CrossRefGoogle Scholar
  10. 10.
    D. J. DeRosier, and L. G. Tilney, How actin filaments pack into bundles, Cold Spring Harbor Symp. in Quant. Biol., 46:525 (1982).CrossRefGoogle Scholar
  11. 11.
    D. J. DeRosier, L. G. Tilney and E. Egelman, Actin in the inner ear: The remarkable structure of the stereocilium, Nature, (London), 287:291 (1980).CrossRefGoogle Scholar
  12. 12.
    D. E. Dunn, J. A. Ferraro and D. Lim, Electrophysiological and morphological correlations of TTS in the chinchilla, Abs. Assoc. Res. Otolaryngol., 4:37 (1979).Google Scholar
  13. 13.
    B. Engstrom, Scanning electron microscopy of the inner structure of the organ of Corti and its neural pathways, Acta Otolarngol. Suppl. 319:57 (1974).Google Scholar
  14. 14.
    B. Engstrom, Fusion of stereocilia on inner hair cells in man and in the rabbit, rat and guinea pig, Scand. Audiol., 27:381 (1983).Google Scholar
  15. 15.
    B. Engstrom, Stereocilia of sensory cells in normal and hearing impaired ears, Scand Audiol., Suppl., 19:1 (1983).Google Scholar
  16. 16.
    B. Engstrom and E. Borg, Cochlear morphology in relation to loss of behavioral, electrophysiological and middle ear reflex thresholds after exposure to noise, Acta Otolaryngol., Suppl. 402:1 (1983).Google Scholar
  17. 17.
    B. Engstrom, A. Flock and E. Borg, Ultrastructural studies of stereocilia in noise-exposed rabbits, Hearing Res., 12:251 (1983).CrossRefGoogle Scholar
  18. 18.
    H. Engstrom and B. Engstrom, Structural changes in the cochlea following overstimulation by noise, Acta Otolaryngol. Suppl. 360:75 (1979).Google Scholar
  19. 19.
    S. A. Falk, Combined effects of noise and ototoxic drugs, Environ. Health Perspect, 34:5 (1972).CrossRefGoogle Scholar
  20. 20.
    A. Flock, Physiological properties of sensory hairs in the ear, in: “Psychophysics and Physiology of Hearing,” E. F. Evans and J. P. Wilson, eds., Academic Press, New York (1977).Google Scholar
  21. 21.
    A. Flock and H. C. Cheung, Actin filaments in sensory hairs of inner ear receptor cells, J. Cell Biol., 75:339 (1977).CrossRefGoogle Scholar
  22. 22.
    A. Flock and D. Strelioff, Graded and nonlinear mechanical properties of sensory hairs in the mammalian hearing organ, Nature, 310:597 (1984).CrossRefGoogle Scholar
  23. 23.
    A. Flock and D. Strelioff, Studies on hair cells in isolated coils from the guinea pig cochlea, Hearing Res., 15:11 (1984).CrossRefGoogle Scholar
  24. 24.
    A. Flock, B. Flock and E. Murrary, Studies on the sensory hairs of receptor cells in the inner ear, Acta Otolaryngol., 83:85 (1977).CrossRefGoogle Scholar
  25. 25.
    T. J. Garfinkle and J. C. Saunders, Morphology of inner hair cell stereocilia in C57BL/6J mice as studied by scanning electron microscopy, Otolaryngol., Head and Neck Surg. 91:421 (1983).Google Scholar
  26. 26.
    N. Hirakowa and L. G. Tilney, Interactions between actin filaments and between actin filaments and membranes in quick-frozen and deeply etched hair cells of the chick ear, J. Cell Biol., 95:249 (1982).CrossRefGoogle Scholar
  27. 27.
    A. J. Hudspeth, Models for mechanoelectrical transduction by hair cells, in: “Contemporary Sensory Neurobiology,” M. J. Correia and A. A. Perachio, eds., Alan R. Liss, Inc, New York (1985).Google Scholar
  28. 28.
    A. J. Hudspeth and D. P. Corey, Sensitivity, polarity, and conductance changes in the response of vertebrate hair cells to controlled mechanical stimuli, Proc. Natl. Acad. Sci. (U.S.A.) 74:2407 (1977).CrossRefGoogle Scholar
  29. 29.
    I. Hunter-Duvar, Hearing and hair cells, Canada J. Otolaryngol., 4:152 (1975).Google Scholar
  30. 30.
    I. M. Hunter-Duvar, Morphology of the normal and the acoustically damaged cochlea, Scan. Elect. Micr. 2:421 (1977).Google Scholar
  31. 31.
    I. M. Hunter-Duvar, A scanning study of acoustic lesions of the cochlea, in: “Inner ear biology,” M. Portmann and J. M. Aran, eds., INSERM, 68:385 (1977).Google Scholar
  32. 32.
    I. M. Hunter-Duvar, Reissner’s membrane and endocytosis of cell debris, Acta Otolaryngol., 351:24 (1978).CrossRefGoogle Scholar
  33. 33.
    I. M. Hunter-Duvar and M. Suzuki, Inner ear damage from acoustic trauma, in: “Personal hearing protection in industry,” P. M. Alberti, ed., Raven Press, New York (1981).Google Scholar
  34. 34.
    I. M. Hunter-Duvar, M. Suzuki and R. J. Mount, Anatomical changes in the organ of Corti after acoustic stimulation, in: “New perspectives on noise-induced hearing loss,” R. P. Hamernik, D. Henderson and R. Salvi, eds., Raven Press, New York (1982).Google Scholar
  35. 35.
    M. Itoh, Preservation and visualization of actin-containing filaments in the apical zone of cochlear sensory cells, Hearing Res., 6:277 (1982).CrossRefGoogle Scholar
  36. 36.
    M. Itoh and T. Nakashima, Structure of the hair rootlets on cochlear sensory cells by tannic acid fixation, Acta Otolaryngol., 90:385 (1980).CrossRefGoogle Scholar
  37. 37.
    S. Iurato, Submicroscopic structures of the membraneous labyrinth, Z. Zellforsch., 53:259 (1961).CrossRefGoogle Scholar
  38. 38.
    K. Karlsson and A. Flock, Sinnesharens i Cortiska organet mikromekanik: In vitro studie med stroboskopiskt ljus, Svensk Otolaryngol. Forening, 2:24 (1983).Google Scholar
  39. 39.
    A. Leibovitz, The growth and maintenance of tissue cell cultures in free gas exchange with the atmosphere, Am. J. Hyg., 78:173 (1963).Google Scholar
  40. 40.
    M. C. Liberman, and D. G. Beil, Hair cell condition and auditory nerve response in normal and noise-damaged cochleas, Acta Otolaryngol., 88:161 (1979).CrossRefGoogle Scholar
  41. 41.
    M. C. Liberman and L. W. Dodds, Single neuron labeling and chronic cochlear pathology. II. Stereocilia damage and alterations of spontaneous discharge rates, Hearing Res., 16:43 (1984).CrossRefGoogle Scholar
  42. 42.
    M. C. Liberman, and L. W. Dodds, Single neuron labeling and chronic cochlear pathology. III. Stereocilia damage and alterations of threshold tuning curves, Hearing Res., 16:55 (1984).CrossRefGoogle Scholar
  43. 43.
    M. C. Liberman and M. J. Mulroy, Acute and chronic effects of acoustic trauma: cochlear pathology and auditory nerve pathophysiology, in: “New perspectives on noise-induced hearing loss,” R. P. Hamernik, D. Henderson and R. Salvi, eds., Raven Press, New York (1982).Google Scholar
  44. 44.
    D. J. Lim, Cochlear anatomy related to cochlear micromechanics: A review, J. Acoust. Soc. Am., 67:1686 (1980).CrossRefGoogle Scholar
  45. 45.
    D. J. Lim and D. E. Dunn, Anatomic correlates of noise-induced hearing loss, Otolaryngol. Clinics North Am., 12:493 (1979).Google Scholar
  46. 46.
    D. J. Lim and W. Melnick, Acoustic damage to the cochlea: A scanning and transmission electron microscopic observation, Arch. Otolaryngol., 94:294 (1971).CrossRefGoogle Scholar
  47. 47.
    H. H. Lindeman and G. Bredberg, Scanning elactron microscopy of the organ of Corti after intense auditory stimulation: Effects on stereocilia and cuticular surface of hair cells, Arch. Klin. Exper. Ohren. Nasen, und Kehlkopfheil-Kunde, 203:1 (1972).CrossRefGoogle Scholar
  48. 48.
    M. J. Mulroy, and F. J. Curley, Stereociliary pathology and noise-induced threshold shifts: A scanning electron microscopic study, Scan. Elect. Micro., 4:1733 (1982).Google Scholar
  49. 49.
    D.-Ch. Neugebauer and U. Thurm, Interconnections between the stereovilli of the fish inner ear, Cell Tissue Res., 240:449 (1985).CrossRefGoogle Scholar
  50. 50.
    M. P. Osborne, S. D. Comis and J. O. Pickles, Morphology and cross-linkage of stereocilia in the guinea pig labyrinth examined without the use of osmium as a fixative, Cell Tissue Res., 237:43 (1984).Google Scholar
  51. 51.
    J. O. Pickles, S. D. Comis and M. P. Osborne, Cross-links between stereocilia in the guinea pig organ of Corti, and their possible relation to sensory transduction, Hearing Res., 15:103 (1984).CrossRefGoogle Scholar
  52. 52.
    D. Robertson, Effects of acoutic trauma on stereocilia structure and spinal ganglion cell tuning properties in the guinea pig cochlea, Hearing Res., 7:55 (1982).CrossRefGoogle Scholar
  53. 53.
    D. Robertson and B. M. Johnstone, Acoustic trauma in the guinea pig cochlea: Early changes in ultrastructure and neural thresholds, Hearing Res., 3:167 (1980).CrossRefGoogle Scholar
  54. 54.
    D. Robertson, B. M. Johnstone and T. J. McGill, Effects of loud tones on the inner ear; A combined electrophysiological and ultrastructural study, Hearing Res. 2:39 (1980).CrossRefGoogle Scholar
  55. 55.
    I. J. Russell and P. M. Sellick, Intracellular studies of hair cells in the mammalian cochlea, J. Physiol., 284:261 (1978).Google Scholar
  56. 56.
    R. J. Salvi, R. P. Hamernik and D. Henderson, Auditory nerve activity and cochlear morphology after noise exposure, Arch. Otorhinolaryngol., 224:111 (1979).CrossRefGoogle Scholar
  57. 57.
    J. C. Saunders and N. Coppa, The contribution of stereocilia, rootlet, and cuticular plate injury to sensory neural heaing loss, in: “Sensorineural Hearing Loss: Mechanisms, Diagnosis and Treatment,” M. J. Collins, T. J. Glattke and L. A. Harker, eds., Univer. Iowa Press, Iowa City, (1986).Google Scholar
  58. 58.
    J. C. Saunders and S. P. Dear, Comparative morphology of stereocilia, in: “Hearing and Other Senses: Presentations in Honor of E. G. Wever,” R. R. Fay and G. Gourevitch, eds., The Amphora Press Groton, Connecticut (1983).Google Scholar
  59. 59.
    J. C. Saunders and A. Flock, Recovery of threshold shift in hair-cell stereocilia following exposure to intense stimulation, Hearing Res., (Submitted).Google Scholar
  60. 60.
    J. C. Saunders and L. G. Tilney, Species differences in susceptibility to noise exposure, in: “New Perspectives on Noise-Induced Hearing Loss,” R. P. Hamernik, D. Henderson and R. J. Salvi, eds., Raven Press, New York (1982).Google Scholar
  61. 61.
    J. C. Saunders, B. Canlon and A. Flock, Growth of threshold shift in hair-cell stereocilia following overstimulation, Hearing Res. (Submitted).Google Scholar
  62. 62.
    J. C. Saunders, B. Canlon and A. Flock, Recovery of threshold shift in hair-cell stereocilia following exposure to intense stimulation, Hearing Res., (Submitted).Google Scholar
  63. 63.
    J. C. Saunders, S. P. Dear and M. E. Schneider, The anatomical consequences of acoustic injury: A review and tutorial, J. Acoust. Soc Am., 78:833 (1985).CrossRefGoogle Scholar
  64. 64.
    J. C. Saunders, M. E. Schneider and S. P. Dear, The structure and function of actin in hair cells, J. Acoust. Soc. Am., 78:299 (1985).CrossRefGoogle Scholar
  65. 65.
    N. Slepecky and S. C. Chamberlain, Distribution and polarity of actin in the sensory hair cells of the chinchilla cochlea, Cell Tissue Res., 224:15 (1982).CrossRefGoogle Scholar
  66. 66.
    N. Slepecky, R. P. Hamernik D. Henderson and D. Coling, Ultra-structural changes to the cochlea resulting from impulse noise, Arch. Otorhinolaryngol., 230:273 (1981).CrossRefGoogle Scholar
  67. 67.
    N. Slepecky, R. P. Hamernik, D. Henderson, and D. Cooling, Correlation of audiometric data with changes in cochlear hair cell stereocilia resulting from impulse noise trauma, Acta Otolaryngol., 93:329 (1982).CrossRefGoogle Scholar
  68. 68.
    E. R. Soudijn, Scanning electron microscopic study of the organ of Corti in normal and sound-damaged guinea pigs, Ann. Otol. Rhinol. Laryngol., Suppl. 29:1 (1976).Google Scholar
  69. 69.
    H. Spoendlin, Ultrastructure and peripheral innervation pattern of the receptor in relation to the first coding of the acoustic message, in: “Hearing Mechanisms in Vertebrates,” A. V. S. DeReuck and J. Knight, eds., J. A. Churchill, London (1968).Google Scholar
  70. 70.
    H. Spoendlin, Auditory, vestibular, olfactory and gustatory organs. in: “Ultrastructure of the Peripheral Nervous System and Sense Organs: An Atlas of Normal and Pathologic Anatomy,” Bischoff, ed., Thieme, Stuttgart (1970).Google Scholar
  71. 71.
    H. Spoendlin, Primary structural changes in the organ of Corti after acoustic overstimulation, Acta Otolaryngol., 71:166 (1971).CrossRefGoogle Scholar
  72. 72.
    H. Spoendlin, Anatomical changes following various noise exposures, in: “Effects of Noise on Hearing,” D. Henderson, R. P. Hamernik, S. Dosanjh and J. H. Mills, eds., Raven Press, New York (1976).Google Scholar
  73. 73.
    P. E. Stopp, The effect of moderate-intensity noise on cochlear potentials and structure, in: “New Perspectives on Noise-Induced Hearing Loss,” R. P. Hamernik, D. Henderson and R. Salvi, eds., Raven Press, New York (1982).Google Scholar
  74. 74.
    P. E. Stopp, Effects on guinea pig cochlea from exposure to moderately intense broadband noise, Hearing Res., 11:55 (1983).CrossRefGoogle Scholar
  75. 75.
    D. Strelioff and A. Flock, Stiffness of sensory-cell hair bundles in the isolated guinea pig cochlea, Hearing Res., 15:19 (1984).CrossRefGoogle Scholar
  76. 76.
    H. M. Theopold, Das akustische trauma im tierexperimen. I. morphologische veranderungen der meerschweinchen cochlea nach knalltrauma, Laryngol. Rhinol., 57:706 (1978).Google Scholar
  77. 77.
    H. M. Theopold, Das akustische trauma im tierexperiment. II. morphologische veranderungen der meerschweinchen cochlea nach sinustonstimulation und rosa rauschen, Laryngol. Rhinol., 57:892 (1978).Google Scholar
  78. 78.
    H. M. Theopold, The acoustic trauma in animal experiment. II. morphological reaction in the guinea pig cochlea after traumatisation by pure tones and octave band noise (a SEM-and TEM-Study), Laryngol. Rhinol., 57:892 (1978).Google Scholar
  79. 79.
    P. R. Thorne and J. B. Gavin, Changing relationships between structure and function in the cochlea during recovery from intense sound exposure, Ann. Otol. Rhinol. Laryngol., 94:81 (1985).Google Scholar
  80. 80.
    P. R. Thorne, J. B. Gavin and P. B. Herdson, A quantitative study of the sequence of topographical changes in the organ of Corti following acoustic trauma, Acta Otolaryngol., 97:69 (1984).CrossRefGoogle Scholar
  81. 81.
    L. G. Tilney, D. J. DeRosier and M. J. Mulroy, The organization of actin filaments in the stereocilia of cochlear hair cell, Cell Biol. 86:244 (1980).CrossRefGoogle Scholar
  82. 82.
    L. C. Tilney and J. C. Saunders, Actin filaments, stereocilia, and hair cells of the bird cochlea. I. Length, number, width, and distribution of stereocilia of each hair cell are related to the position of the hair cell on the cochlea, J. Cell Biol., 96:807 (1983).CrossRefGoogle Scholar
  83. 83.
    L. C. Tilney, E. H. Egelman, E. H. DeRosier and J. C. Saunders, Actin filaments, stereocilia, and hair cells of the bird cochlea. II. Packing of actin filament in the stereocilia and in the cuticular plate and what happens to the organization when the stereocilia are bent, Cell Biol., 96:882 (1983).Google Scholar
  84. 84.
    L. C. Tilney, J. C. Saunders, E. Engelman and D. J. DeRosier, Changes in the organization of actin filaments in the stereocilia of noise-damaged lizard cochleae, Hearing Res., 7:181 (1982).CrossRefGoogle Scholar
  85. 85.
    F. A. Voelker, C. M. Henderson, A. W. Maclin and W. E. Tucker, Evaluating the rat inner ear, Arch Otolaryngol., 106:613 (1980).CrossRefGoogle Scholar
  86. 86.
    A. Wright, Giant cilia in the human organ of Corti, Clin. Otolaryngol., 7:193 (1982).CrossRefGoogle Scholar
  87. 87.
    A. Wright, Dimensions of the cochlear stereocilia in man and the guinea pig, Hearing Res., 13:89 (1984).CrossRefGoogle Scholar
  88. 88.
    U. Zimmerman, G. Pilivat and F. Riemann, Dielectric breakdown of cell membranes, Biophys., 141:881 (1974).CrossRefGoogle Scholar
  89. 89.
    U. Zimmerman and P. Scheurich, High frequency fusion of plant protoblasts by electric fields, Planta., 151:26 (1981).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • James C. Saunders
    • 1
    • 2
  • Barbara Canlon
    • 1
    • 2
  • Ake Flock
    • 1
    • 2
  1. 1.Department of Otorhinolaryngology and Human CommunicationUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of Physiology IIKarolinska InstituteStockholmSweden

Personalised recommendations