Advertisement

Critical Periods of Susceptibility to Noise-Induced Hearing Loss

  • Marc Lenoir
  • Remy Pujol
  • Gregory R. Bock
Part of the NATO ASI Series book series (NSSA, volume 111)

Abstract

Deafness in children has deleterious effects on the development of speech, language and listening skills [1]. A large number of factors contribute to hearing losses in the perinatal periods. Congenital infections, such as toxoplasmosis, rubella, cytomegallovirus and others [2] have been recognized as possible etiological factors of auditory dysfunction. Evidence for early conductive and perceptual deficits of genetic origin has been found in experimental models of hereditary hearing impairment [3]. Moreover, it has been proposed that early exposures to physical and chemical agents such as noise and ototoxic drugs, which have noxious influences on the auditory receptors in adults [4,5] may drastically increase the probability of deafness in young subjects [6–8]. This conclusion receives strong support from experimental studies, which demonstrate critical periods of susceptibility to acoustic and ototoxic trauma in young animals [9].

Keywords

Hearing Loss Critical Period Noise Exposure Congenital Hypothyroidism Audiogenic Seizure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. J. Ruben, Critical periods for language acquisition, Acta Oto-Laryngol., in press (1986).Google Scholar
  2. 2.
    I. Minoli and G. Moro, Constraints of intensive care units and follow up studies in prematures, Acta Otolaryngol. Suppl., 421:62 (1985).CrossRefGoogle Scholar
  3. 3.
    K. P. Steel and G. R. Bock, Genetic factors affecting hearing development, Acta Otolaryngol., Suppl., 421:48 (1985).CrossRefGoogle Scholar
  4. 4.
    J. H. Mills, Effects of noise on auditory sensitivity, psychophysical tuning curves, and suppression, in: “New Perspectives on Noise-Induced Hearing Losses,” R. P. Hamernik, D. Henderson, and R. Salvi eds., Raven Press, New York (1982).Google Scholar
  5. 5.
    J. E. Hawkins, Drug ototoxicity, in: “Handbook of Sensory Physiology, Vol. 5: Auditory System, Part 3: Clinical and Special Topics,” W. D. Keidel and W. D. Neff eds., Springer Verlag, Berlin (1976).Google Scholar
  6. 6.
    S. A. Falk and J. C. Farmer, Incubator noise and possible deafness, Arch. Otolaryngol., 97:385 (1973).CrossRefGoogle Scholar
  7. 7.
    E. Douek, H. C. Dodson, L. H. Bannister, P. Ashcroft, and K. N. Humphries, Effects of incubator noise on the cochlea of the newborn, Lancet., 20:1110 (1976).CrossRefGoogle Scholar
  8. 8.
    G. C. McCullagh and D. R. Watson, The noise exposure of infants in incubators, J. of Sound and Vibration, 67:231 (1979).CrossRefGoogle Scholar
  9. 9.
    A. Uziel, Non-genetic factors affecting hearing development. Acta Otolaryngol., Suppl. 421:57 (1985).CrossRefGoogle Scholar
  10. 10.
    R. Pujol, Period of sensitivity to antibiotic treatment, Acta Otolaryngol., Suppl., in press (1986).Google Scholar
  11. 11.
    J. C. Saunders and G. R. Bock, Influences of early auditory trauma on auditory development, in: “Studies on the Development of Behavior and the Nervous System,” Vol. 4: Early Influences, G. Gottlieb ed., Academic Press, New York (1978).Google Scholar
  12. 12.
    R. P. Hamernik and D. Henderson, The potentiation of noise by other ototraumatic agents, in: “Effects of Noise on Hearing,” D. Henderson, R. Hamernik, D. Dosanjh, and J. Mills eds., Raven Press, New York (1976).Google Scholar
  13. 13.
    M. Lenoir and R. Pujol, Effects combines de l’amikacine et du trauma acoustique sur la cochlee du raton pendant la periode de sensibilite critique, Acustica, 46:255 (1980).Google Scholar
  14. 14.
    H. C. Dodson, L. H. Bannister, and E. E. Douek, The effects of combined gentamicin and white noise on the spiral organ of young guinea pigs. A structural study, Acta Otolaryngol., 94:193 (1982).CrossRefGoogle Scholar
  15. 15.
    S. A. Falk, R. O. Cook, J. K. Haseman, and G. M. Sanders, Noise-induced inner ear damage in newborns and adult guinea pigs. Laryngoscope, 84:444 (1974).CrossRefGoogle Scholar
  16. 16.
    H. C. Dodson, L. H. Bannister, and E. E. Douek, Further studies of the effects of continuous white noise of moderate intensity (70-80 dB SPL) on the cochlea in young guinea pigs, Acta Otolaryngol., 88:195 (1978).CrossRefGoogle Scholar
  17. 17.
    J. W. Coleman, Age-dependent changes and acoustic trauma in the spiral organ of the guinea pig, Scand. Audiol., 5:63 (1976).CrossRefGoogle Scholar
  18. 18.
    G. R. Price, Age as a factor in susceptibility to hearing loss: young versus adult ears, J. Acoust. Soc. Am., 60:886 (1976).CrossRefGoogle Scholar
  19. 19.
    R. Pujol and D. Hilding, Anatomy and physiology of the onset of auditory function, Acta Otolaryngol., 76:1 (1973).CrossRefGoogle Scholar
  20. 20.
    J. C. Saunders, G. R. Bock, C. S. Chen, and G. R. Gates, The effects of priming for audiogenic seizures on cochlear and behavioral responses in BALB/c mice, Exp. Neurol., 36:426 (1972).CrossRefGoogle Scholar
  21. 21.
    C. S. Chen, G. R. Gates, and G. R. Bock, Effect of priming and tympanic membrane destruction on development of audiogenic seizure susceptibility in BALB/c mice, Exp. Neurol., 39:277 (1973).CrossRefGoogle Scholar
  22. 22.
    J. C. Saunders and K. A. Hirsch, Changes in cochlear microphonic sensitivity after priming C57B1/6J mice at various ages for audiogenic seizures, J. Comp. Physiol. Psychol., 90:212 (1976).CrossRefGoogle Scholar
  23. 23.
    K. R. Henry, Abnormal auditory development resulting from exposure to ototoxic chemicals, noise, and auditory restriction, in: “Development of Auditory and Vestibular Systems,” R. Romand ed., Academic Press, New York (1983).Google Scholar
  24. 24.
    K. R. Henry, Noise and the young mouse: Genotype modifies the sensitive period for effects on cochlear physiology and audiogenic seizures, Behavioral Neuroscience, 98:1073 (1984).CrossRefGoogle Scholar
  25. 25.
    M. S. Deol, Inherited diseases of the inner ear in man in the light of studies on the mouse, J. Med. Gen., 5:137 (1968).CrossRefGoogle Scholar
  26. 26.
    R. Stanek, G. R. Bock, M. L. Goran, and J. C. Saunders, Age-dependent susceptibility to auditory trauma in the hamster; Behavioral and electrophysiological consequences, Transactions of the American Academy of Ophthalmology and Otolaryngology, 84:465 (1977).Google Scholar
  27. 27.
    G. R. Bock and J. C. Saunders, A critical period for acoustic trauma in the hamster and its relation to cochlear development, Science, 197:396 (1977).CrossRefGoogle Scholar
  28. 28.
    C. B. Stephens, Development of the middle and inner ear in the golden hamster (Mesocricetus auratus), Acta Otolaryngol., Suppl., 296 (1972).Google Scholar
  29. 29.
    R. Pujol and M. Abonnenc, Receptor maturation and synaptogenesis in the golden hamster cochlea, Arch. Oto-Rhino-Laryngol., 217:1 (1977).CrossRefGoogle Scholar
  30. 30.
    A. Shnerson and R. Pujol, Development: Anatomy, electrophysiology and behavior, in: “The Auditory Psychobiology of the Mouse,” J. F. Willot ed., C. C. Thomas, Springfield (1983).Google Scholar
  31. 31.
    G. R. Bock and E. J. Seifter, Developmental changes of susceptibility to auditory fatigue in young hamsters, Audiology, 17:193 (1978).CrossRefGoogle Scholar
  32. 32.
    M. Lenoir, G. R. Bock, and R. Pujol, Supra-normal susceptibility to acoustic trauma in the rat pup cochlea, J. Physiol. (Paris), 75:521 (1979).Google Scholar
  33. 33.
    M. Lenoir and R. Pujol, Sensitive period to acoustic trauma in the rat pup cochlear histological findings, Acta Otolaryngol., 89:317 (1980).CrossRefGoogle Scholar
  34. 34.
    T. Wada, Anatomical and physiological studies on the growth of the inner ear of the albino rat, Memoirs of the Wistar Institute of Anatomy and Biology, 10 (1923).Google Scholar
  35. 35.
    D. E. Crowley and M. C. Hepp-Reymond, Development of cochlear function in the ear of the infant rat, J. Comp. Physiol. Psychol., 62:427 (1966).CrossRefGoogle Scholar
  36. 36.
    M. Lenoir, A. Shnerson, and R. Pujol, Cochlear receptor development in the rat with emphasis on synaptogenesis, Anat. Embryol., 160:253 (1980).CrossRefGoogle Scholar
  37. 37.
    A. Uziel, R. Romand, and M. Marot, Development of cochlear potentials in rats, Audiology, 20:89 (1980).CrossRefGoogle Scholar
  38. 38.
    E. Carlier, M. Lenoir, and R. Pujol, Development of cochlear frequency selectivity tested by compound action potential tuning curves, Hearing Res., 1:197 (1979).CrossRefGoogle Scholar
  39. 39.
    B. A. Bohne, Mechanisms of noise damage in the inner ear, in: “Effects of Noise on Hearing,” D. Henderson, R. Hamernik, D. Dosanjh, and J. Mills, Raven Press, New York (1976).Google Scholar
  40. 40.
    R. Wersall, The tympanic muscles and their reflexes, Acta Otolaryngol., Suppl. 139 (1958).Google Scholar
  41. 41.
    H. Cousillas and G. Rebillard, Age-dependent effects of a pure tone trauma in the chick basilar papilla: Evidence for a development of the tonotopic organization, Hearing Res., in press (1985).Google Scholar
  42. 42.
    J. Dau, L. H. Bannister, D. B. Gower, R. W. Evans, and E. E. Douek, Developmental changes in the polypeptide profiles of different cochlear regions in rodents, Trans. Biochem. Soc., in press (1985).Google Scholar
  43. 43.
    J. J. Eggermont, Defining and determining sensitive periods, Acta Otolaryngol., Suppl., in press (1986).Google Scholar
  44. 44.
    R. Pujol, Morphology, synaptology and electrophysiology of the developing cochlea, Acta Otolaryngol., Suppl., 421:5 (1985).CrossRefGoogle Scholar
  45. 45.
    A. Uziel, C. Legrand, and A. Rabie, Corrective effects of thyroxine on cochlear abnormalities induced by congenital hypothyroidism in the rat. I. Morphological study, Dev. Brain Res., 19:111 (1985).CrossRefGoogle Scholar
  46. 46.
    K. R. Henry, R. A. Chole, M. D. McGinn, and D. P. Frush, Increased ototoxicity in both young and old mice, Arch. Otolaryngol., 107:92 (1981).CrossRefGoogle Scholar
  47. 47.
    J. F. Corso, Auditory processes and aging: Significant problems for research, Exp. Aging Res., 10:171 (1984).CrossRefGoogle Scholar
  48. 48.
    E. M. Keithley and M. L. Feldman, Hair cell counts in an age-graded series of rat cochleas, Hearing Res., 8:249 (1982).CrossRefGoogle Scholar
  49. 49.
    G. Bredberg, The human cochlea during development and aging, J. Laryngol., 81:739 (1967).Google Scholar
  50. 50.
    J. F. Willott, Changes in frequency representation in the auditory system of mice with age-related hearing impairment, Brain Res., 309:159 (1984).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Marc Lenoir
    • 1
  • Remy Pujol
    • 1
  • Gregory R. Bock
    • 2
  1. 1.Lab. Neurobiologie de I’AuditionINSERM-U. 254Montpellier CedexFrance
  2. 2.The Ciba FoundationLondonUK

Personalised recommendations