Increase in Central Auditory Responsiveness During Continuous Tone Stimulation or Following Hearing Loss

  • G. M. Gerken
  • R. Simhadri-Sumithra
  • K. H. V. Bhat
Part of the NATO ASI Series book series (NSSA, volume 111)


Most models of hearing loss explicitly or implicitly assume that damage to the hair cells reduces the amount and distribution of input to the central auditory mechanisms according to the pattern of damage along the receptor surface. Thus, the basis for reduced psychophysical performance with hearing loss was initially sought in the pattern and distribution of cochlear damage and not in altered central mechanisms. It is now apparent that central anatomic changes follow the peripheral changes produced by acoustic trauma [1,2] or auditory deprivation in the young animal [3,4]. Central physiological differences between the normal-hearing and hearing-impaired animal have also been reported in a variety of preparations [5–9]. The argument is made herein that a contemporary model of hearing impairment not only must include impoverished transduction, but must recognize altered central processing as well.


Hearing Loss Auditory Cortex Inferior Colliculus Electrical Stimulus Cochlear Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. K. Morest, Degeneration in the brain following exposure to noise, in: “New Perspectives on Noise-Induced Hearing Loss,” R. P. Hamernik, D. Henderson, and R. Salvi, eds., Raven Press, New York, (1983).Google Scholar
  2. 2.
    D. K. Morest and B. A. Bohne, Noise-induced degeneration in the brain and representation of inner and outer hair cells, Hear. Res., 9:145 (1983).CrossRefGoogle Scholar
  3. 3.
    D. B. Webster and M. Webster, Neonatal sound deprivation affects brain stem auditory nuclei, Arch. Otolaryngol., 103:392 (1977).CrossRefGoogle Scholar
  4. 4.
    D. B. Webster and M. Webster, Effects of neonatal conductive hearing loss on brain stem auditory nuclei, Ann. Otol. Rhinol. Laryngol., 88:684 (1979).Google Scholar
  5. 5.
    G. Babighian, G. Moushegian and A. L. Rupert, Central auditory fatigue, Audiol., 14:72 (1972).CrossRefGoogle Scholar
  6. 6.
    R. Salvi, D. Henderson, and R. Hamernik, Auditory fatigue: Retrocochlear components, Science, 190:486 (1975).CrossRefGoogle Scholar
  7. 7.
    R. J. Salvi, Central components of the temporary threshold shift, in: “Effects of Noise on Hearing,” D. Henderson, R. P. Hamernik, D. S. Dosanjh, and J. H. Mills, eds., Raven Press, New York, (1976).Google Scholar
  8. 8.
    K. P. Steel and G. R. Bock, Electrically-evoked responses in animals with progressive spiral ganglion degeneration, Hear. Res., 15:59 (1984).CrossRefGoogle Scholar
  9. 9.
    J. F. Willott and S. M. Lu, Noise-induced hearing loss can alter neural coding and increase excitability in the central nervous system, Science, 216:1331 (1982).CrossRefGoogle Scholar
  10. 10.
    W. R. Webster and L. M. Aitkin, Central auditory processing, in: “Handbook of Psychobiology,” M. S. Gazzaniga and C. Blakemore, ed., Academic Press, New York, (1975).Google Scholar
  11. 11.
    G. M. Gerken, S. S. Saunders, R. E. Paul, Hypersensitivity to electrical stimulation of auditory nuclei follows hearing loss in cats, Hear. Res., 13:249 (1984).CrossRefGoogle Scholar
  12. 12.
    H-T Chang, Cortical response to stimulation of lateral geniculate body and the potentiation thereof by continuous illumination of the retina, J. Neurophysiol., 15:5 (1952).Google Scholar
  13. 13.
    G. M. Gerken, S. S. Saunders, R. Simhadri-Sumithra, and K. H. V. Bhat, Behavioral thresholds for electrical stimulation applied to auditory brainstem nuclei in cat are altered by injurious and noninjurious sound, Hear. Res., in press.Google Scholar
  14. 14.
    G. Rebillard, M. Rebillard, E. Carlier and R. Pujol, Histophysiological relationships in the deaf white cat auditory system, Acta Otolaryngol., 82:48 (1976).CrossRefGoogle Scholar
  15. 15.
    K. R. Henry and M. Saleh, Recruitment deafness: Functional effect of priming-induced audiogenic seizures in mice, J. Comp. Physiol., 84:430 (1973).Google Scholar
  16. 16.
    J. C. Saunders, G. R. Bock, R. James, and C-S Chen, Effects of priming for audiogenic seizure on auditory evoked responses in the cochlear nucleus and inferior colliculus of BALB/c mice, Exp. Neurol., 37:388 (1972).CrossRefGoogle Scholar
  17. 17.
    R. Salvi, D. Henderson and R. Hamernik, Physiological bases of sensorineural hearing loss, in: “Hearing Research and Hearing,” V. 2, J. Tobias, ed., Academic Press, New York, (1983).Google Scholar
  18. 18.
    A. Arduini and M. H. Goldstein, Enhancement of cortical responses to shocks delivered to lateral geniculate body. Localization and mechanism of the effects, Arch. Ital. Biol., 99:397 (1961).Google Scholar
  19. 19.
    A. Arduini and T. Hirao, Enhancement of evoked responses in the visual system during reversible retinal inactivation, Arch. Ital. Biol., 98:182 (1960).Google Scholar
  20. 20.
    Y. Nakai and E. F. Domino, Reticular facilitation of visually-evoked responses by optic tract stimulation before and after enucleation, Exp. Neurol., 22:532 (1968).CrossRefGoogle Scholar
  21. 21.
    J. M. Posternak, T. C. Fleming, and E. B. Evarts, Effect of interruption of the visual pathway on the response to geniculate stimulation, Science, 129:39 (1959).CrossRefGoogle Scholar
  22. 22.
    H. Sakakura and R. W. Doty, EEG of striate cortex in blind monkeys: Effects of eye movements and sleep, Arch. Ital. Biol., 114:23 (1976).Google Scholar
  23. 23.
    H. Suzuki, Effect of reversible retinal blockage on population response of the lateral geniculate nucleus, Jap. J. Physiol., 17:335 (1967).CrossRefGoogle Scholar
  24. 24.
    G. M. Gerken, Enhancement of the medial geniculate evoked response in conscious cat, Electroenceph. Clin. Neurophysiol., 34:509 (1973).CrossRefGoogle Scholar
  25. 25.
    E. M. Glaser, Cortical responses of awake cat to narrowband FM noise stimuli, J. Acoust. Soc. Am., 50:490 (1971).CrossRefGoogle Scholar
  26. 26.
    R. J. Gumnit and R. G. Grossman, Potentials evoked by sound in the auditory cortex of the cat, Am. J. Physiol., 200:1219 (1961).Google Scholar
  27. 27.
    M. Nomoto, Local auditory evoked potentials and effects of pure tones on click evoked potentials in the pigeon, Hear. Res., 17:13 (1985).CrossRefGoogle Scholar
  28. 28.
    G. R. Farley and A. Starr, Middle and long latency evoked potentials in cat. I. Component definition and dependence on behavioral factors, Hear. Res., 10:117 (1983).CrossRefGoogle Scholar
  29. 29.
    G. M. Gerken, Electrophysiological observations relevant to masking, Audiology, 10:97 (1971).CrossRefGoogle Scholar
  30. 30.
    G. M. Gerken, A systems approach to the relationship between the ear and central auditory mechanisms, in: “Advances in Audiology,” vol. 1, “Artificial Auditory Stimulation Theories,” W. D. Keidel and P. Finkenzeller, ed., Karger, Basel, (1984).Google Scholar
  31. 31.
    J. E. Desmedt and L. Franken, Long-term physiological changes in auditory cortex following partial deafferentiation, in: “The Effect of Use and Disuse on Neuromuscular Functions,” E. Gutmann and H. Pavel, ed., Elsevier, Amsterdam, (1963).Google Scholar
  32. 32.
    S. K. Sharpless, Disuse supersensitivity, in: “The Developmental Neuropsychology of Sensory Deprivation,” A. H. Riesen, ed., Academic Press, New York, (1975).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • G. M. Gerken
    • 1
  • R. Simhadri-Sumithra
    • 1
  • K. H. V. Bhat
    • 1
  1. 1.Callier Center for Communication DisordersUniversity of Texas at DallasDallasUSA

Personalised recommendations