Psychophysical and Physiological Aspects of Auditory Temporal Processing in Listeners with Noise-Induced Sensorineural Hearing Loss

  • R. J. Salvi
  • S. S. Saunders
  • W. A. Ahroon
  • B. G. Shivapuja
  • S. Arehole
Part of the NATO ASI Series book series (NSSA, volume 111)


One of the most serious changes in hearing that results from acoustic trauma is the deterioration in speech discrimination. However, because of the complex nature of the speech signal, it has been difficult to determine the underlying psychoacoustic and physiological mechanisms that result in poor speech perception. Consequently, many researchers have turned to simpler acoustic stimuli to investigate the performance characteristics of hearing-impaired listeners. The experiments carried out with simple acoustic stimuli have provided a wealth of information on the distortions that occur in intensity discrimination [1–3], loudness growth [4,5], frequency discrimination [6,7], frequency resolution [8,9], and temporal integration [10,11]. One area in which our knowledge has increased considerably over the past 10–15 years is in understanding the changes that occur in frequency selectivity following noise-exposure. Intense noise exposures are known to result in the loss of tuning in the basilar membrane vibration pattern (see Patuzzi this volume) and the frequency response areas of hair cell and single auditory nerve fibers (see Cody and Russell and Liberman et al. this volume). The change in physiological tuning has in turn been reflected in wider psychophysical tuning curves in noise-exposed subjects [9].


Hearing Loss Auditory Nerve Fiber Probe Tone Auditory Temporal Processing Single Auditory Nerve Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Luscher and J. Zwislocki, A simple method for indirect monaural determination of the recruitment phenomenon (difference limen in intensity in different types of deafness), Acta Otolaryngol. 78:156 (1949).Google Scholar
  2. 2.
    J. Jerger, J. L. Shedd and E. Harford, On the detection of extremely small changes in sound intensity, Arch. Otolaryngol. 69:200 (1959).CrossRefGoogle Scholar
  3. 3.
    D. N. Elliott, W. Riach and H. R. Silbiger, Effects on auditory fatigue upon intensity discrimination, J. Acoust. Soc. Am. 34:212 (1962).CrossRefGoogle Scholar
  4. 4.
    H. Davis, C. T. Morgan, J. E. Hawkins, R. Galambos and F. W. Smith, Temporary deafness following exposure to loud tones and noise, Acta Otolaryngol. S88:1 (1950).Google Scholar
  5. 5.
    D. McFadden and H. S. Plattsmier, Exposure-induced loudness shifts and threshold shifts, in: “New Perspectives on Noise-induced Hearing Loss,” R. P. Hamernik, D. Henderson and R. J. Salvi, eds. Raven Press, New York (1982).Google Scholar
  6. 6.
    J. F. Brandt, Frequency discrimination allowing exposure to noise, J. Acoust. Soc. Am. 41:448 (1967).CrossRefGoogle Scholar
  7. 7.
    R. A. Butler and J. P. Albrite, The pitch discriminative function of the pathological ear, Arch. Otolaryngol. 64:411 (1956).Google Scholar
  8. 8.
    B. Leshowitz and R. Lindstrom, Measurement of nonlinearities in listeners with sensorineural hearing loss, in: “Psychophysics and Physiology of Hearing,” E. F. Evans and J. P. Wilson, eds., Academic Press, London (1977).Google Scholar
  9. 9.
    R. J. Salvi, J. Perry, R. P. Hamernik and D. Henderson, Relationships between cochlear pathologies and auditory nerve and behavioral responses following acoustic trauma, in: “New Perspectives on Noise-induces Hearing Loss,” R. P. Hamernik, D. Henderson and R. J. Salvi, eds., Raven Press, New York (1982).Google Scholar
  10. 10.
    J. F. Jerger, Influence of stimulus duration on the pure-tone threshold during recovery from auditory fatigue, J. Acoust. Soc. Am. 27:121 (1955).CrossRefGoogle Scholar
  11. 11.
    D. Henderson, Temporal summation of acoustic signals by the chinchilla, J. Acoust. Soc. Am. 46:474 (1969).CrossRefGoogle Scholar
  12. 12.
    R. Tyler, Q. Summerfield, E. J. Wood and M. A. Fernandes, Psychoacoustic and phonetic temporal processing in normal and hearing-impaired listeners, J. Acoust. Soc. Am. 72:740 (1982).CrossRefGoogle Scholar
  13. 13.
    E. Cudahy, Changes in the temporal processing of acoustic signals in hearing-impaired listeners, in: “New Perspectives on Noise-induced Hearing Loss,” R. P. Hamernik, D. Henderson and R. J. Salvi, eds., Raven Press, New York (1982).Google Scholar
  14. 14.
    P. Fitzgibbons and F. L. Wightman, Temporal resolution in normal and hearing-impaired listeners, J. Acoust. Soc. Am. 72:761 (1982).CrossRefGoogle Scholar
  15. 15.
    D. M. Giraudi-Perry, R. J. Salvi and D. Henderson, Gap detection in hearing-impaired chinchillas, J. Acoust. Soc. Am. 75:1387 (1985).Google Scholar
  16. 16.
    R. J. Salvi and S. Arehole, Gap detection in chinchillas with temporary high-frequency hearing loss, J. Acoust. Soc. Am. 77:1173 (1985).CrossRefGoogle Scholar
  17. 17.
    B. G. Shivapuja, R.J. Salvi and S. S. Saunders, Intensity discrimination in chinchillas, J. Acoust. Soc. Am. 77:S83 (1984).CrossRefGoogle Scholar
  18. 18.
    D. Henderson, R. P. Hamernik, C. Woodford, R. Sitler and R. Salvi, Evoked-response audibility curve of the chinchilla, J. Acoust. Soc. Am. 54:1099 (1973).CrossRefGoogle Scholar
  19. 19.
    R. J. Salvi, W. A. Ahroon, J. W. Perry, A. D. Gunnarson and D. Henderson, Comparison of psychophysical and evoked-potential tuning curves in the chinchilla. Am. J. Otolaryngol. 3:408 (1982).CrossRefGoogle Scholar
  20. 20.
    R. J. Salvi, R. P. Hamernik and D. Henderson, Response patterns of auditory nerve fibers during temporary threshold shift, Hearing Res. 10:37 (1983).CrossRefGoogle Scholar
  21. 21.
    R. Plomp, Rate of decay of auditory sensation, J. Acoust. Soc. Am. 36:277 (1964).CrossRefGoogle Scholar
  22. 22.
    D. Henderson, R. Salvi, G. Pavek and R. Hamernik, Amplitude modulation thresholds in chinchillas with high-frequency hearing loss, J. Acoust. Soc. Am. 75:1177 (1984).CrossRefGoogle Scholar
  23. 23.
    R. A. Smiarowski and R. Carhart, Relations among temporal resolution, forward masking and simultaneous masking, J. Acoust. Soc. Am. 57:1169 (1979).CrossRefGoogle Scholar
  24. 24.
    D. A. Nelson and C. W. Turner, Decay of masking and frequency resolution in sensorineural hearing-impaired listeners, in: “Psychophysical, Physiological and Behavioral Studies in Hearing,” G. Van den Brink and F. A. Bilsen, eds., Delft University Press, Delft, Netherlands (1980).Google Scholar
  25. 25.
    T. W. Tillman and L. Rosenblatt, Forward masking in normal and hearing-impaired listeners, Paper presented at the Am. Speech Hearing Assn., Washington, D. C. (1975).Google Scholar
  26. 26.
    P. Fitzgibbons, Temporal gap resolution in narrow-bank noises with center frequencies from 6000–14000 Hz., J. Acoust. Soc. Am., 75:566 (1984).CrossRefGoogle Scholar
  27. 27.
    R. J. Salvi, W. A. Ahroon and D. Henderson, Evoked-response turing curves in normal and hearing-impaired chinchillas, Paper presented at the 19th Workshop on Inner Ear Biology, Mainz, W. Germany (1982).Google Scholar
  28. 28.
    B. Sharf, Critical banks, in: “Foundations of modern Auditory Theory,” J. V. Tobias, ed., Academic Press, New York (1970).Google Scholar
  29. 29.
    D. Harris and P. Dallos, Forward masking of auditory nerve fiber responses, J. Neurophysiol. 42:1083 (1970).Google Scholar
  30. 30.
    M. C. Liberman, Auditory-nerve response from cats raised in a low-noise chamber, J. Acoust. Soc. Am. 63:442 (1978).CrossRefGoogle Scholar
  31. 31.
    M. C. Liberman, Morphological differences among radial afferent fibers in the cat cochlea; An electron microscopic study of serial sections, Hearing Res. 3:45–63 (1980).CrossRefGoogle Scholar
  32. 32.
    M. C. Liberman, Single-neuron labeling in the cat auditory nerve, Sci. 216:1239 (1982).CrossRefGoogle Scholar
  33. 33.
    R. Smith, Short-term adaptation in single auditory nerve fibers: Some poststimulatory effect., J. Neurophysiol. 40:1098 (1977).Google Scholar
  34. 34.
    M. C. Liberman and M. J. Mulroy, Acute and chronic effects of acoustic trauma: Cochlear pathology and auditory nerve pathophysiology, in: “New Perspectives on Noise-induced Hearing Loss,” R. P. Hamernik, D. Henderson and R. J. Salvi, eds., Raven Press, New York (1982).Google Scholar
  35. 35.
    H. H. Spoendlin, Primary ultrastructural changes in the organ of Corti after acoustic overstimulation, Acta Otolaryngol. Stockh.) 71:166 (1971).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • R. J. Salvi
    • 1
  • S. S. Saunders
    • 1
  • W. A. Ahroon
    • 1
  • B. G. Shivapuja
    • 1
  • S. Arehole
    • 1
  1. 1.Callier Center for Communication DisordersUniversity of Texas at DallasDallasUSA

Personalised recommendations