Structure-Function Correlation in Noise-Damaged Ears: A Light and Electron-Microscopic Study

  • M. Charles Liberman
  • L. W. Dodds
  • D. A. Learson
Part of the NATO ASI Series book series (NSSA, volume 111)


Of the roughly 50,000 afferent fibers in the cat’s auditory nerve, approximately 95% terminate peripherally on inner hair cells (IHCs), as the so-called “radial fibers” (RFs) [24,25]. RFs comprise the population of neurons sampled when the auditory nerve is impaled with glass microelectrodes [9]. In the cat, the great majority of RFs is unbranched, terminating on a single IHC via a single terminal swelling [24,8]. Thus, by sampling the activity of a single RF we have a window onto the functional state of a very restricted region of the organ of Corti. By sampling the activity of different single fibers, with different characteristic frequencies (CFs), we can assess the functional state of the entire cochlea, from base to apex.


Hair Cell Auditory Nerve Tuning Curve Threshold Shift Auditory Nerve Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. W. Ades, C. Trahiotis, A. Kokko-Cunningham and B. Averbuch, Comparison of hearing thresholds and morphological changes in the chinchilla after exposure to 4 kHz tones, Acta Otolaryngol. 78:192 (1974).CrossRefGoogle Scholar
  2. 2.
    A. R. Cody and D. Robertson, Variability of noise-induced damage in the guinea pig cochlea: electrophysiological and morphological correlates after strictly controlled exposures, Hearing Res. 9:55 (1983).CrossRefGoogle Scholar
  3. 3.
    B. Engstrom, A. Flock and E. Borg, Ultrastructural studies of stereocilia in noise-exposed rabbits, Hearing Res. 12:251 (1983).CrossRefGoogle Scholar
  4. 4.
    E. F. Evans, Peripheral auditory processing in normal and abnormal ears: physiological considerations for attempts to compensate for auditory deficits by acoustic and electric prostheses, Scand. Audiol. Suppl. 6:1 (1978).Google Scholar
  5. 5.
    N. Y. S. Kiang, E. C. Moxon and R. A. Levine, Auditory nerve activity in cats exposed to ototoxic drugs, in: “Sensorineural Hearing Loss,” Ciba Symposium, G.E.W. Wolstenholme and J. Knight eds., J. and A. Churchill, London (1970).Google Scholar
  6. 6.
    N. Y. S. Kiang, T. Watanabe, E. C. Thomas, and L. F. Clark, “Discharge Patterns of Single Fibers in the Cat’s Auditory Nerve,” MIT Press, Cambridge (1965).Google Scholar
  7. 7.
    M. C. Liberman, Auditory nerve response from cats raised in a low-noise chamber, J. Acoust. Soc. Amer. 63:442 (1978).CrossRefGoogle Scholar
  8. 8.
    M. C. Liberman, Morphological differences among radial afferent fibers in the cat cochlea: an electron microscopic study of serial sections, Hearing Res. 3:45 (1980).CrossRefGoogle Scholar
  9. 9.
    M. C. Liberman, Single-neuron labeling in the cat auditory nerve, Science 216:1239 (1982).CrossRefGoogle Scholar
  10. 10.
    M. C. Liberman, The cochlear frequency map for the cat: labeling auditory nerve fibers of known characteristic frequency, J. Acoust. Soc. Amer. 72:1441 (1982).CrossRefGoogle Scholar
  11. 11.
    M. C. Liberman, Single neuron labeling and chronic cochlear pathology, I: Threshold shift and characteristic frequency shift, Hearing Res. 16:33 (1984).CrossRefGoogle Scholar
  12. 12.
    M. C. Liberman and D. G. Beil, Hair cell condition and auditory nerve response in normal and noise-damaged cochleas, Acta Otolaryngol. 88:161 (1979).CrossRefGoogle Scholar
  13. 13.
    M. C. Liberman and L. W. Dodds, Single neuron labeling and chronic cochlear pathology, II: Stereocilia damage and alterations of spontaneous discharge rates, Hearing Res. 16:43 (1984).CrossRefGoogle Scholar
  14. 14.
    M. C. Liberman and L. W. Dodds, Single-neuron labeling and chronic cochlear pathology, III: Stereocilia damage and alterations in threshold tuning curves, Hearing Res. 16:55 (1984).CrossRefGoogle Scholar
  15. 15.
    M. C. Liberman and N. Y. S. Kiang, Acoustic trauma in cats: cochlear pathology and auditory nerve activity, Acta Otolaryngol. Suppl. #358:1 (1978).Google Scholar
  16. 16.
    M. C. Liberman and N. Y. S. Kiang, Single-neuron labeling and chronic cochlear pathology, IV: Stereocilia damage and alterations in rate and phase-level functions, Hearing Res. 16:75 (1984).CrossRefGoogle Scholar
  17. 17.
    M. C. Liberman and M. J. Mulroy, Acute and chronic effects of acoustic trauma: cochlear pathology and auditory nerve pathophysiology, in: “New Perspectives on Noise-Induced Hearing Loss,” R. P. Hamernik, D. Henderson and R. Salvi, eds., Raven Press, New York.Google Scholar
  18. 18.
    D. Lim and W. Melnick, Acoustic damage of the cochlea, Arch. Otolaryngol. 94:294 (1971).CrossRefGoogle Scholar
  19. 19.
    J. D. Miller, C. S. Watson and W. P. Covell, Deafening effects of noise on the cat, Acta Otolaryngol. Suppl. 176:1 (1963).Google Scholar
  20. 20.
    D. Robertson, Effects of acoustic trauma on stereocilia structure and spiral ganglion cell tuning properties in the guinea pig cochlea, Hearing Res. 7:55 (1982).CrossRefGoogle Scholar
  21. 21.
    W. F. Sewell, The effects of furosemide on the endocochlear potential and auditory nerve fiber tuning curves in cats, Hearing Res. 14:305 (1984).CrossRefGoogle Scholar
  22. 22.
    N. Slepecky and S. C. Chamberlain, Distribution and polarity of actin in the sensory hair cells of the chinchilla cochlea, Cell Tissue Res. 224:15 (1982).CrossRefGoogle Scholar
  23. 23.
    N. Slepecky, R. Hamernik, D. Henderson and D. Coling, Correlation of audioraetric data with changes in cochlear hair cell stereocilia resulting from impulse noise trauma, Acta Otolaryngol. 93:329 (1982).CrossRefGoogle Scholar
  24. 24.
    H. H. Spoendlin, Innervation of the organ of Corti of the cat, Acta Otolaryngol. 67:239 (1969).CrossRefGoogle Scholar
  25. 25.
    H. H. Spoendlin, Primary structural changes in the organ of Corti after acoustic overstimulation, Acta Otolaryngol. 71:166 (1971).CrossRefGoogle Scholar
  26. 26.
    L. G. Tilney, D. J. DeRosier and M. J. Mulroy, The organization of actin filaments in the stereocilia of cochlear hair cells, J. Cell Biol. 86:244 (1980).CrossRefGoogle Scholar
  27. 27.
    L. G. Tilney, J. C. Saunders, E. Egelman and D. J. DeRosier, Changes in the organization of actin filaments in the stereocilia of noise-damaged lizard cochleae, Hearing Res. 7:181 (1982).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • M. Charles Liberman
    • 1
    • 2
  • L. W. Dodds
    • 1
  • D. A. Learson
    • 1
  1. 1.Eaton-Peabody LaboratoryMassachusetts Eye and Ear InfirmaryBostonUSA
  2. 2.Department of PhysiologyHarvard Medical SchoolBostonUSA

Personalised recommendations