Proton NMR Studies of RNA’S and Related Enzymes Using Isotope Labels

  • A. G. Redfield
  • B.-S. Choi
  • R. H. Griffey
  • M. Jarema
  • P. Rosevear
  • P. Hoben
  • R. Swanson
  • D. Soll
Part of the NATO ASI Series book series (NSSA, volume 110)


This article gives a brief history of proton NMR in RNA’s, mainly tRNA, followed by a descriptions of recent work in our lab based primarily on proton NMR aided by deuteron and nitrogen 15 labeling, directed more and more towards studies of protein-tRNA interaction. The field is young in that the first promising spectra of tRNA were reported by Kearns et al1 roughly fifteen years ago; but tRNA is now one of the older areas of biochemical NMR, being overtaken, in amount of research, by studies of smaller RNA fragments and small enzymes. Transfer RNA, and especially tRNA synthetases, remain one of the larger molecules studied by NMR. Over the years tRNA has provided a testing ground for some types of NMR methodologies, and we hope that this will continue to be true. Transfer RNA is too large, probably, for us to expect to solve complete structures as appears possible for smaller proteins and nucleic acids, but on the other hand it is a small molecule by biological standards. It has well-studied interactions with enzymes but much remains to be learned, such as details of recognition by aminoacyl tRNA synthetases. Thus it is of interest to continue research on NMR of this important molecule.


Proton Resonance Nuclear Overhauser Effect Aminoacyl tRNA Synthetase Nuclear Overhauser Effect Assignment Nuclear Overhauser Effect Peak 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.R. Kearns, D.J. Patel, and R.G. Shulman, Nature 229:338 (1971).CrossRefGoogle Scholar
  2. 2.
    B.R. Reid, Ann. Rev. Biochemistry 50:96 (1981).Google Scholar
  3. 3.
    P.D. Johnston and A.G. Redfield, Nucleic Acids Res. 4:3599 (1977) and 5:3913 (1978).CrossRefGoogle Scholar
  4. 4.
    P.D. Johnston and A.G. Redfield, Biochemistry 20:3996 (1981).CrossRefGoogle Scholar
  5. 5.
    P.D. Johnston, N. Figueroa, and A.G. Redfield, Proc. Nat. Acad. Sci. USA 76:3130 (1979).CrossRefGoogle Scholar
  6. 6.
    V, Sanchez, A.G. Redfield, P.D. Johnston, and J.S. Tropp, Proc. Nat. Acad. Sci. USA 77:5659 (1980).CrossRefGoogle Scholar
  7. 7.
    S. Roy and A.G. Redfield, Nucleic Acids Res. 9:7073 (1981).CrossRefGoogle Scholar
  8. 8.
    D.R. Hare and B.R. Reid, Biochemistry 21:1835 (1982).CrossRefGoogle Scholar
  9. 9.
    J. Tropp and A.G. Redfield, Biochemistry 20:2133 (1981).CrossRefGoogle Scholar
  10. 10.
    E. Schejter, S. Roy, V. Sanchez, and A.G. Redfield, Nucleic Acids Res. 10:8297 (1982).CrossRefGoogle Scholar
  11. 11.
    B. Choi and A.G. Redfield, Nucleic Acids Res. (in press) (1985).Google Scholar
  12. 12.
    A. Heerschap, C.A.G. Haasnoot, and C.W. Hilbers, Nucleic Acids Res. 10:6981 (1982); 11:4483 and 11:4501 (1983).CrossRefGoogle Scholar
  13. 13.
    S. Roy and A.G. Redfield, Biochemistry 22:1386 (1983).CrossRefGoogle Scholar
  14. 14.
    R.H. Griffey, C.D. Poulter, A. Bax, B.L. Hawkins, Z. Yamaizumi, and S. Nishimura, Proc. Nat. Acad. Sci. 80:5895 (1983).CrossRefGoogle Scholar
  15. 15.
    S. Roy, M.Z. Papastavros, V. Sanchez, and A.G. Redfield, Biochemistry 23:4395 (1984).CrossRefGoogle Scholar
  16. 16.
    C.W. Hilbers, A. Heerschap, C.A.G. Haasnoot, and J.A.L.I. Walters, J. Biomol. Struct. Dyn. 1:183 (1983).Google Scholar
  17. 17.
    G.M. Clore, A.M. Gronenborn, E.A. Piper, L.W. McLaughlin, E. Graeser, and J. VanBoom, Biochem J. 221:737 (1984).Google Scholar
  18. 18.
    G.M. Clore, A. Gronenborn, and L.W. McLaughlin J. Mol. Biol. 174:163 (1984).CrossRefGoogle Scholar
  19. 19.
    K. Hall, P. Cruz, I. Tinnoco, Jr., T.M. Jovin, and J.H. van de Sande, Nature 311:5986 (1984).Google Scholar
  20. 20.
    S. Roy, M.Z. Papastavros, and A.G. Redfield, Nucleic Acids Res. 10:8341 (1982).CrossRefGoogle Scholar
  21. 21.
    D.R. Hare and B.R. Reid, Biochemistry 21:5129 (1982).CrossRefGoogle Scholar
  22. 22.
    J.S. Tropp, Nucleic Acids Res. 11:2121 (1983).CrossRefGoogle Scholar
  23. 23.
    M. Gueron and J.L. Leroy, Biophys. J. 38:231 (1982).CrossRefGoogle Scholar
  24. 24.
    N. Figueroa, G. Keith, J.L. Leroy, P. Plateau, S. Roy, and M. Gueron, Proc. Nat. Acad. Sci. USA 80:4330 (1983).CrossRefGoogle Scholar
  25. 25.
    J.L. Leroy, N. Bolo, N. Figueroa, P. Plateau, and M. Gueron, J. Biomolec. Struct. Dyn. 2:915 (1985).Google Scholar
  26. 26.
    B. Choi, Thesis, Brandeis University (1985).Google Scholar
  27. 27.
    C. Smith, P.G. Schmidt, J. Petsch, and P.F. Agris, Biochemistry 24:1434 (1985).CrossRefGoogle Scholar
  28. 28.
    A. Bax, R. Griffey, and B.L. Hawkins, J. Magn. Reson. 55:301 (1983).CrossRefGoogle Scholar
  29. 29.
    O. Jardetzky and G.K.C. Roberts, “NMR in Molecular Biology”, Academic Press (New York, 1981).Google Scholar
  30. 30.
    M. Emshwiller, E.L. Hahn, and D. Kaplan, Phys. Rev. 188:414 (1960).CrossRefGoogle Scholar
  31. 31.
    R.H. Griffey, MA. Jarema, S. Kunz, P.R. Rosevear, and A.G. Redfield, J. Amer. Chem. Soc. 107:711 (1985).CrossRefGoogle Scholar
  32. 32.
    D. Davis, R.H. Griffey, C.D. Poulter, J. Biol. Chem. (in press) (1985).Google Scholar
  33. 33.
    D.G. Barker, J.-P. Ebel, R. Jakes, and C.J. Briton, Eur. J. Biochem. 127:449 (1982).CrossRefGoogle Scholar
  34. 34.
    P. Hoben, N. Royal, A. Cheung, F. Yamao, K. Biemann, and D. Soll, J. Biol. Chem. 257:11644 (1982).Google Scholar
  35. 35.
    C. Zelwer, J.L. Risler, and S. Brunie, J. Mol. Biol. 155:63 (1982).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • A. G. Redfield
    • 1
  • B.-S. Choi
    • 1
  • R. H. Griffey
    • 1
  • M. Jarema
    • 1
  • P. Rosevear
    • 1
  • P. Hoben
    • 2
  • R. Swanson
    • 2
  • D. Soll
    • 2
  1. 1.Department of BiochemistryBrandeis UniversityWalthamUSA
  2. 2.Department of Molecular Biology and BiophysicsYale UniversityNew HavenUSA

Personalised recommendations