Pseudoknots in RNA: A Novel Folding Principle

  • Cornelis W. A. Pleij
  • Alex van Belkum
  • Krijn Rietveld
  • L. Bosch
Part of the NATO ASI Series book series (NSSA, volume 110)


Models of the secondary structure of RNA usually contain a number of characteristic structural elements like base paired stem regions and various kinds of single stranded regions like hairpin, bulge, interior and bifurcation loops (Zuker and Stiegler, 1981). In such models mostly about one third or more of the nucleotide residues remains unpaired, which in some cases is confirmed by experimental data or computer-aided predictions. Although stem regions unquestionably are an important feature in the structure of RNA molecules, the final three-dimensional structure will be determined mainly by the interactions of the residues left in the single stranded regions. This is clearly illustrated in the case of tRNA, where the T-, D- and variable loop are largely responsible for maintaining the typical L shape of the molecule (Kim et al., 1974; Robertus et al., 1974). The tertiary interactions in the native conformation of tRNA often involve non standard base pairs or base triplets, while only in a few cases normal Watson-Crick base pairs are found. In fact Watson-Crick base pairing between complementary sequences might be considered an obvious possibility for tertiary interactions. Such interactions have been proposed indeed for the ribosomal 5S RNA (Pieler and Erdmann, 1982; Trifonov and Bolshoi, 1983) and were previously proposed on theoretical grounds (Studnicka et al., 1978). Tertiary interactions of this kind were called knotted or pseudoknotted structures depending on whether or not they could give rise to real knots in the RNA chain, especially when the resulting stem regions are in the range of one turn of an RNA double helix (Cantor, 1980).


Tobacco Mosaic Virus Double Helix Hairpin Loop Stem Region Deep Groove 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahlquist, P., Dasgupta, R. and Kaesberg, P. (1981) Cell 23, 183–189.CrossRefGoogle Scholar
  2. Arnott, S., Hukins, D.W.L. and Dover, S.D. (1972) Biochem. Biophys. Res. Commun. 48, 1392–1399.CrossRefGoogle Scholar
  3. Briand, J.P., Jonard, G., Guilley, H., Richards, K. and Hirth, L. (1977) Eur. J. Biochem. 72, 453–463.CrossRefGoogle Scholar
  4. Cantor, C.R. (1980) in “Ribosomes” (Chambliss, G., Craven, G., Davies, J., Davis, K., Kahan, L. and Nomura, M, eds.) University Park Press, Baltimore pp. 23–49.Google Scholar
  5. Cech, T.R. (1983) Cell 34, 713–716.CrossRefGoogle Scholar
  6. Davies, R.W., Waring, R.B., Ray, J.A., Brown, T.A. and Scazzocchio, C. (1982) Nature 300, 719–724.CrossRefGoogle Scholar
  7. Dickerson, R.E. (1983) J. Mol. Biol. 166, 419–441.CrossRefGoogle Scholar
  8. Florentz, C., Briand, J.P., Romby, P., Hirth, L., Ebel, J.P. and Giegé, R. (1982) EMBO J. 1, 269–276.Google Scholar
  9. Florentz, C., Briand, J.P. and Giegé, R. (1984) FEBS Lett. 176, 295–300.CrossRefGoogle Scholar
  10. Fox, G.E. and Woese, C.R. (1975) Nature 256, 505–507.CrossRefGoogle Scholar
  11. Goelet, P., Lomonossoff, G.P., Butler, P.J.G., Akam, M.E., Gait, M.J. and Karn, J. (1982) Proc. Natl. Acad. Sci. USA 79, 5818–5822.CrossRefGoogle Scholar
  12. Gralla, J. and Crothers, D.M. (1973) J. Mol. Biol. 73, 497–511.CrossRefGoogle Scholar
  13. Haenni, A.-L., Joshi, S. and Chapeville, F. (1982) in “Progress in Nucleic Acids Research and Molecular Biology” (Cohn, W.E., ed) Academic Press, New York, 27, pp. 85–102.Google Scholar
  14. Hall, T.C. (1979) Int. Rev. Cytol. 610, 1–26.CrossRefGoogle Scholar
  15. Joshi, R.L., Joshi, S., Chapeville, F. and Haenni, A.-L. (1983) EMBO J. 2, 1123–1127.Google Scholar
  16. Joshi, R.L., Chapeville, F. and Haenni, A.-L. (1985) Nucleic Acids Res. 13, 347–354.CrossRefGoogle Scholar
  17. Joshi, S., Chapeville, F. and Haenni, A.-L. (1982) Nucleic Acids Res. 10, 1947–1962.CrossRefGoogle Scholar
  18. Kim, S.-H., Suddath, F.L., Quigley, G.J., McPherson, A., Sussman, J.L., Wang, A.H.J., Seeman, N.C. and Rich, A. (1974) Science 185, 435–440.CrossRefGoogle Scholar
  19. Kozlov, Y.V., Rupasov, V.V., Adyshev, D.M., Beigelarskaya, S.N., Agranovsky, A.A., Mankin, A.S., Mozorov, S.Y., Dolja, V.V. and Atabekov, J.G. (1984) Nucleic Acids Res. 12, 4001–4009.CrossRefGoogle Scholar
  20. Maly, P. and Brimacombe, R. (1983) Nucleic Acids Res. 11, 7263–7268.CrossRefGoogle Scholar
  21. Meshi, T., Kiyama, R., Ohno, T. and Okada, Y. (1983) Virology 127, 54–64.CrossRefGoogle Scholar
  22. Nussinov, R. and Tinoco, I. (1981) J. Mol. Biol. 151, 519–533.CrossRefGoogle Scholar
  23. Peattie, D.A. and Gilbert, W. (1980) Proc. Natl. Acad. Sci. USA 77, 4679–4682.CrossRefGoogle Scholar
  24. Pieler, T. and Erdmann, V.A. (1982) Proc. Natl. Acad. Sci. USA 79, 4599–4603.CrossRefGoogle Scholar
  25. Pley, C.W.A., Rietveld, K. and Bosch, L. (1985) Nucleic Acids Res. 13, 1717–1731.CrossRefGoogle Scholar
  26. Quigley, G.J. and Rich, A. (1976) Science 194, 796–806.CrossRefGoogle Scholar
  27. Quigley, G.J., Teeter, M.M. and Rich, A. (1978) Proc. Natl. Acad. Sci. USA 75, 64–68.CrossRefGoogle Scholar
  28. Rietveld, K. (1984) Ph.D. Thesis, University of Leiden.Google Scholar
  29. Rietveld, K., van Poelgeest, R., Pley, C.W.A., van Boom, J.H. and Bosch, L. (1982) Nucleic Acids Res. 10, 1929–1946.CrossRefGoogle Scholar
  30. Rietveld, K., Pley, C.W.A. and Bosch, L. (1983) EMBO J. 2, 1079–1085.Google Scholar
  31. Rietveld, K., Linschooten, K., Pley, C.W.A. and Bosch, L. (1984) EMBO J. 3, 2613–2619.Google Scholar
  32. Robertus, J.D., Ladner, J.E., Finch, J.T., Rhodes, D., Brown, R.S., Clark, B.F.C. and Klug, A. (1974) Nature 250, 546–551.CrossRefGoogle Scholar
  33. Saenger, W. (1984) in “Principles of Nucleic Acid Structure”, Chapter 15, Springer Verlag, New York.CrossRefGoogle Scholar
  34. Silberklang, M., Prochiantz, A., Haenni, A.-L. and RajBhandary, U.L. (1977) Eur. J. Biochem. 72, 465–478.CrossRefGoogle Scholar
  35. Studnicka, G.M., Rahm, G.M., Cummings, I.W. and Salser, W.A. (1978) Nucleic Acids Res. 5, 3365–3387.CrossRefGoogle Scholar
  36. Sundaralingam, M. (1980) in “Biomolecular Structure, Conformation, Function and Evolution” Vol I (Srinivasan, R. ed.) Pergamon Press, Oxford.Google Scholar
  37. Takamatsu, N., Ohno, T., Meshi, T. and Okada, Y. (1983) Nucleic Acids Res. 11, 3767–3778.CrossRefGoogle Scholar
  38. Trifonov, E.N. and Bolshoi, G. (1983) J. Mol. Biol. 169, 1–13.CrossRefGoogle Scholar
  39. Van Belkum, A., Abrahams, J.P., Pley, C.W.A. and Bosch, L. (1985) Nucl. Acids Res. 13, 7673–7686.CrossRefGoogle Scholar
  40. Waring, R.B. and Davies, R.W. (1984) Gene 28, 277–291.CrossRefGoogle Scholar
  41. Zuker, M. and Stiegler, T. (1981) Nucleic Acids Res. 9, 133–148.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Cornelis W. A. Pleij
    • 1
  • Alex van Belkum
    • 1
  • Krijn Rietveld
    • 1
  • L. Bosch
    • 1
  1. 1.Department of BiochemistryUniversity of LeidenThe Netherlands

Personalised recommendations