A Better Way to Make RNA for Physical Studies

  • P. Lowary
  • J. Sampson
  • J. Milligan
  • D. Groebe
  • O. C. Uhlenbeck
Part of the NATO ASI Series book series (NSSA, volume 110)


Studies on the structure and function of RNA have often been hampered by the difficulty in obtaining material in sufficient amounts for many physical methods. In addition, the variety of RNA sequences easily available for study is somewhat limited. Ideally, one would like a simple method to rapidly obtain multimilligram amounts of any RNA sequence desired. Although methods for the chemical synthesis of RNA have progressed rapidly in the past several years (1), they remain technically quite complex and are generally limited to fragments of less than 20 nucleotides. The enzymatic methods used by this laboratory to synthesize RNA by joining shorter fragments with T4 RNA ligase have also succeeded in preparing fragments up to 20 nucleotides long, but yield only very small amounts of material (2).


Template Strand Type Template Runoff Transcription Runoff Transcript Yeast tRNAPhe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. H. van Boom, and C. T. J. Wreesman, in: Oligonucleotide Synthesis: A Practical Approach, Chapter 7, pp. 153 M. J. Gait, ed., IRL Press, Oxford (1984).Google Scholar
  2. 2.
    D. Beckett and O. C. Uhlenbeck, ibid, Chapter 8, pp. 185.Google Scholar
  3. 3.
    M. Chamberlin and T. Ryan, in: The Enzymes, Chapter 4, pp. 87 P. Boyer ed., 3rd Edition, Academic Press (1982).Google Scholar
  4. 4.
    E. Butler and M. Chamberlin, J. Biol. Chem. 257, 5772 (1982).Google Scholar
  5. 5.
    D. A. Melton, P. A. Krieg, M. R. Rebagliati, T. Maniatis, R. Zinn, and M. R. Green, Nuc. Acids Res. 12, 7035 (1984).CrossRefGoogle Scholar
  6. 6.
    Osterman, H. L. and Coleman, J. E., Biochemistry 20, 4884 (1981).CrossRefGoogle Scholar
  7. 7.
    P. Davanloo, A. Rosenberg, J. Dunn, and F. W. Studier, Proc. Natl. Acad. Sci. USA 81, 2035 (1984).CrossRefGoogle Scholar
  8. 8.
    G. Kassavetis, and M. Chamberlin, J. Virol. 29, 196 (1979).Google Scholar
  9. 9.
    T. E. England, A. G. Bruce, and O. C. Uhlenbeck, Methods in Enzymology 65, 65 (1980).CrossRefGoogle Scholar
  10. 10.
    M. Rosa, Cell 16, 815 (1979).CrossRefGoogle Scholar
  11. 11.
    J. J. Dunn, and F. W. Studier, J. Mol. Biol. 166, 477 (1983).CrossRefGoogle Scholar
  12. 12.
    J. D. Gralla, A. J. Carpousis, and J. E. Stefano, Biochemistry 19, 5864 (1980).CrossRefGoogle Scholar
  13. 13.
    O. C. Uhlenbeck, J. Carey, P. Romaniuk, P. Lowary, and D. Beckett, J. Biomol. Struct. and Dynam. 1, 539 (1983).Google Scholar
  14. 14.
    D. Roy, and A. Redfield, Biochemistry 22, 1386 (1983).CrossRefGoogle Scholar
  15. 15.
    A. Heerschap, C. A. G. Haasnoot, and C. W. Hilbers, Nuc. Acids Res. 11, 4501 (1983).CrossRefGoogle Scholar
  16. 16.
    R. Koshi, S. Clarkson, J. Kurjan, B. Hall, and M. Smith, Cell 22, 415 (1980).CrossRefGoogle Scholar
  17. 17.
    J. D. Smith, Prog. Nuc. Acids. Res. 16, 25 (1976).CrossRefGoogle Scholar
  18. 18.
    A. G. Bruce and O. C. Uhlenbeck, Biochemistry 21, 855 (1982).CrossRefGoogle Scholar
  19. 19.
    B. Roe, M. Michael, and B. Dudock, Nature New Biology 233, 274 (1971).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • P. Lowary
    • 1
  • J. Sampson
    • 1
  • J. Milligan
    • 1
  • D. Groebe
    • 1
  • O. C. Uhlenbeck
    • 1
  1. 1.Department of BiochemistryUniversity of IllinoisUrbanaUSA

Personalised recommendations