Viroids: Structure Formation and Function

  • Gerhard Steger
  • Volker Rosenbaum
  • Detlev Riesner
Part of the NATO ASI Series book series (NSSA, volume 110)


Among the nucleic acids, the single-stranded RNA molecules have the highest potential to form a large variety of structures and to undergo quite different structural transitions. The determination of their structure and structural transitions is a prerequisite for understanding their function in replication, transcription, translation, and regulation. In many cases the problem of RNA structure is particularly difficult for in addition to the secondary structure formed by Watson-Crick base pairs and possibly wobble base pairs, a complicated tertiary structure exists which cannot be described by a few prototypes of interactions.


Secondary Structure Main Transition Potato Spindle Tuber Viroid Denaturation Curve Ionic Strength Dependence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T.O. Diener, Viroids: Structure and function, Science, 205:859 (1979).CrossRefGoogle Scholar
  2. 2.
    H.J. Gross, and D. Riesner, Viroids: a class of subviral pathogens, Angew. Chem. Int. Ed. 19:231 (1980).CrossRefGoogle Scholar
  3. 3.
    H.L. Sänger, Biology, structure, functions, and possible origin of viroids, in: “Encyclopaedia of Plant Physiology, New Series”, vol 14B, B. Parthier and D. Boulter, ed., Springer, Berlin, Heidelberg, New York (1981).Google Scholar
  4. 4.
    D. Riesner, M. Colpan, T.C. Goodman, L. Nagel, J. Schumacher, G. Steger, and H. Hofmann, Dynamics and interaction of viroids, J. Biomolec. Struct. Dynamics, 1:669 (1983).Google Scholar
  5. 5.
    D. Riesner and H.J. Gross, Viroids, Ann. Rev. Biochem., 54:531 (1985).CrossRefGoogle Scholar
  6. 6.
    D. Riesner, K. Henco, U. Rokohl, G. Klotz, A.K. Kleinschmidt, H. Domdey, P. Jank, H.J. Gross, and H.L. Sänger, Structure and structure formation of viroids, J. Mol. Biol., 133:85 (1978).CrossRefGoogle Scholar
  7. 7.
    J.M. Sogo, T. Koller, and T.O. Diener, Potato spindle tuber viroid. X. Visualization and size determination by electron microscopy, Virology, 55:70 (1973).CrossRefGoogle Scholar
  8. 8.
    H.L. Sänger, G. Klotz, D. Riesner, H.J. Gross, and A.K. Kleinschmidt, Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures, Proc. Nat. Acad. Sci. USA, 73:3852 (1976).CrossRefGoogle Scholar
  9. 9.
    U. Wild, K. Ramm, H.L. Sänger, and D. Riesner, Loops in viroids, Eur. J. Biochem., 103:227 (1980).CrossRefGoogle Scholar
  10. 10.
    D. Riesner, J.M. Kaper, and J.W. Randies, Stiffness of viroids and viroid-like RNA in solution, Nucl. Acids Res., 10:5587 (1982).CrossRefGoogle Scholar
  11. 11.
    T.C. Goodman, L. Nagel, W. Rappold, G. Klotz, and D. Riesner, Viroid replication: Equilibrium association constants and comparative activity measurements for the viroid-polymerase interaction, Nucl. Acids Res., 12:6231 (1984).CrossRefGoogle Scholar
  12. 12.
    H.J. Gross, H.L. Sänger, J. Schumacher, G. Steger, and D. Riesner, Viroids: Their structure and possible origin, in: “Endocytobiology”, vol. II, H.E.A. Schenk, W. Schwemmler, ed., de Gruyter, Berlin.Google Scholar
  13. 13.
    R. Nussinov and I. Tinoco, Small changes in free energy assignments for unpaired bases do not affect predicted secondary structures in single stranded RNA, Nucl. Acids Res., 10:341 (1982).CrossRefGoogle Scholar
  14. 14.
    G. Steger, H. Hofmann, J. Förtsch, H.J. Gross, J.W. Randies, H.L. Sänger, and D. Riesner, Conformational transitions in viroids and virusoids: Comparison of results from energy minimization algorithm and from experimental data, J. Biomolec. Struct. Dynamics, 2:543 (1984).Google Scholar
  15. 15.
    D. Pörschke, O. C. Uhlenbeck, and F. H. Martin, Thermodynamics and kinetics of the helix-coil transition of oligomers containing GC base pairs, Biopolymers, 12:1313 (1973).CrossRefGoogle Scholar
  16. 16.
    J. Gralla and D.M. Crothers, Free energy of imperfect nucleic acid helices, J. Mol Biol., 73:497 (1973).CrossRefGoogle Scholar
  17. 17.
    J. Gralla and D.M. Crothers, Free energy of imperfect nucleic acid helices. III. Small internal loops resulting from mismatches, J. Mol. Biol., 78:301 (1973).CrossRefGoogle Scholar
  18. 18.
    T.R. Fink and H. Krakauer, The enthalpy of the ‘bulge’ defect of imperfect nucleic acid helices, Biopolymers, 14:433 (1975).CrossRefGoogle Scholar
  19. 19.
    T.R. Fink and D.M. Crothers, Free energy of imperfect nucleic acid helices. I. The bulge effect, J. Mol. Biol. 66:1 (1972).CrossRefGoogle Scholar
  20. 20.
    J.R. Fresco, L.C. Klotz, and E.G. Richards, New spectroscopic approach to the determination of helical secondary structure in ribonucleic acids, Cold Spring Harb. Symp. Quant. Biol., 28:83 (1963).CrossRefGoogle Scholar
  21. 21.
    S.M. Coutts, Thermodynamics and kinetics of GC base pairing in the isolated extra arm of serine-specific tRNA from yeast, Biochem. Biophys. Acta, 232:94 (1971).Google Scholar
  22. 22.
    I. Tinoco, O.C. Uhlenbeck, and M.D. Levine, Estimation of secondary structure in ribonucleic acids, Nature, 230:362 (1971).CrossRefGoogle Scholar
  23. 23.
    J. Langowski, K. Henco, D. Riesner, and H. L. Sänger, Common structural features of different viroids: Serial arrangement of double helical sections and internal loops, Nucl. Acids Res., 5:1589 (1978).CrossRefGoogle Scholar
  24. 24.
    R. Nussinov, G. Pieczenik, J.R. Griggs, and D.J. Kleitman, Algorithms for loop matchings, SIAM J. Appl. Math., 35:68 (1978).MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    R. Nussinov and A. Jacobson, Fast algorithm for predicting the secondary structure of single-stranded RNA, Proc. Natl. Acad. Sci. USA, 77:6309 (1980).CrossRefGoogle Scholar
  26. 26.
    M. Zuker and P. Stiegler, Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information, Nucl. Acids Res., 9:133 (1981).CrossRefGoogle Scholar
  27. 27.
    K. Henco, H.L. Sänger, D. Riesner, Fine structure melting of viroids as studied by kinetic methods, Nucl. Acids Res., 6:3041 (1979).CrossRefGoogle Scholar
  28. 28.
    J.W. Randies, G. Steger, and D. Riesner, Structural transitions in viroid-like RNAs associated with cadang-cadang disease, velvet tobacco mottle virus, and Solanum nodiflorum mottle virus, Nucl. Acids Res., 10:5569 (1982).CrossRefGoogle Scholar
  29. 29.
    F.M. Pohl, Einfache Temperatursprung-Methode im Sekunden-bis Stundenbereich und die reversible Denaturierung von Chymotrypsin, Eur. J. Biochem., 4:373 (1968).CrossRefGoogle Scholar
  30. 30.
    M. Eigen and L. DeMaeyer, Theoretical basis of relaxation spectroscopy, in “Techniques of Organic Chemistry”, Vol. VIII/2, A. Weissberger, ed., John Wiley, New York (1963).Google Scholar
  31. 31.
    K. Henco, G. Steger, and D. Riesner, Melting curves on less than 1μg of nucleic acid, Anal. Biochem., 101:255 (1980).CrossRefGoogle Scholar
  32. 32.
    D. Riesner, M. Colpan, and J.W. Randies, A microcell for the temperature-jump technique, Anal. Biochem., 121:186 (1982).CrossRefGoogle Scholar
  33. 33.
    H.J. Gross, G. Krupp, H. Domdey, M. Raba, P. Jank, Ch. Lossow, H. Alberty, K. Ramm, and H.L. Sänger, Nucleotide sequence and secondary structure of citrus exocortis and chrysanthemum stunt viroid, Eur. J. Biochem., 121:249 (1982).CrossRefGoogle Scholar
  34. 34.
    P. Palukaitis and R.H. Symons, Purification and characterization of the circular form of CSV, J. Gen. Virol., 46:477 (1980).CrossRefGoogle Scholar
  35. 35.
    M. Colpan, J. Schumacher, W. Brüggemann, H.L. Sänger, and D. Riesner, Large-scale purification of viroid RNA using Cs2SO4 gradient centrifugation and HPLC., Anal. Biochem., 131:257 (1983).CrossRefGoogle Scholar
  36. 36.
    G. Steger, H. Müller, and D. Riesner, Helix-coil transition in double-stranded viral RNA: fine resolution melting and ionic strength dependence, Biochem. Biophys. Acta, 606:274 (1980).Google Scholar
  37. 37.
    K. Henco, D. Riesner, and H.L. Sänger, Conformation of viroids, Nucl. Acids Res., 4:177 (1977).CrossRefGoogle Scholar
  38. 38.
    R.H. Symons, ASBV — primary sequence and proposed secondary structure, Nucl. Acids Res., 9:6527 (1981).CrossRefGoogle Scholar
  39. 39.
    J. Haseloff and R.H. Symons, Comparative sequence and structure of viroid-like RNAs of two plant viruses, Nucl. Acids Res. 10:3681 (1982).CrossRefGoogle Scholar
  40. 40.
    W.M. Fitch, Random sequences, J. Mol. Biol. 163:171 (1983).CrossRefGoogle Scholar
  41. 41.
    M. Schnölzer, B. Haas, K. Ramm, H. Hofmann, and H.L. Sänger, Correlation between structure and pathogenicity of PSTV, subm.Google Scholar
  42. 42.
    H.L. Sänger, Minimal infectious agents: the viroids, in: “The Microbe, Part I, Viruses”, B.W.J. Mahy and J.R. Pathison, ed., Cambridge University Press (1984).Google Scholar
  43. 43.
    J. Visvader and R.H. Symons, Eleven new sequence variants of CEV and the correlation of sequence with pathogenicity, Nucl. Acids Res. 13:2907 (1985).CrossRefGoogle Scholar
  44. 44.
    T.O. Diener, Are viroids escaped introns?, Proc. Natl. Acad. Sci. USA, 78:5014 (1981).CrossRefGoogle Scholar
  45. 45.
    D. Riesner, G. Steger, J. Schumacher, H.J. Gross, J.W. Randies, and H.L. Sänger, Structure and Function of viroids, Biophys. Struct. Mech., 9:145 (1983).CrossRefGoogle Scholar
  46. 46.
    P. Keese and R.H. Symons, Domains in viroids: evidence of intermolecular rearrangements and their contribution to viroid evolution, Proc. Natl. Acad. Sci. USA, 78:5014 (1981).CrossRefGoogle Scholar
  47. 47.
    T. Meshi, M. Ishikawa, Y. Watanabe, J. Yamaya, Y. Okada, T. Sano, and E. Shikata, The sequences necessary for the infectivity of hop stunt viroid cDNA clones, Mol. Gen. Genet., 200:199 (1985).CrossRefGoogle Scholar
  48. 48.
    M. Tabler and H.L. Sänger, Cloned single-and double-stranded DNA copies of PSTV RNA and co-inoculated subgenomic DNA fragments are infectious, EMBO J., 3:3055 (1984).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Gerhard Steger
    • 1
  • Volker Rosenbaum
    • 1
  • Detlev Riesner
    • 1
  1. 1.Institut für Physikalische BiologieUniversität DüsseldorfDüsseldorfGermany

Personalised recommendations