Skip to main content

Viroids: Structure Formation and Function

  • Chapter
Structure and Dynamics of RNA

Part of the book series: NATO ASI Series ((NSSA,volume 110))

  • 71 Accesses

Abstract

Among the nucleic acids, the single-stranded RNA molecules have the highest potential to form a large variety of structures and to undergo quite different structural transitions. The determination of their structure and structural transitions is a prerequisite for understanding their function in replication, transcription, translation, and regulation. In many cases the problem of RNA structure is particularly difficult for in addition to the secondary structure formed by Watson-Crick base pairs and possibly wobble base pairs, a complicated tertiary structure exists which cannot be described by a few prototypes of interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. T.O. Diener, Viroids: Structure and function, Science, 205:859 (1979).

    Article  Google Scholar 

  2. H.J. Gross, and D. Riesner, Viroids: a class of subviral pathogens, Angew. Chem. Int. Ed. 19:231 (1980).

    Article  Google Scholar 

  3. H.L. Sänger, Biology, structure, functions, and possible origin of viroids, in: “Encyclopaedia of Plant Physiology, New Series”, vol 14B, B. Parthier and D. Boulter, ed., Springer, Berlin, Heidelberg, New York (1981).

    Google Scholar 

  4. D. Riesner, M. Colpan, T.C. Goodman, L. Nagel, J. Schumacher, G. Steger, and H. Hofmann, Dynamics and interaction of viroids, J. Biomolec. Struct. Dynamics, 1:669 (1983).

    Google Scholar 

  5. D. Riesner and H.J. Gross, Viroids, Ann. Rev. Biochem., 54:531 (1985).

    Article  Google Scholar 

  6. D. Riesner, K. Henco, U. Rokohl, G. Klotz, A.K. Kleinschmidt, H. Domdey, P. Jank, H.J. Gross, and H.L. Sänger, Structure and structure formation of viroids, J. Mol. Biol., 133:85 (1978).

    Article  Google Scholar 

  7. J.M. Sogo, T. Koller, and T.O. Diener, Potato spindle tuber viroid. X. Visualization and size determination by electron microscopy, Virology, 55:70 (1973).

    Article  Google Scholar 

  8. H.L. Sänger, G. Klotz, D. Riesner, H.J. Gross, and A.K. Kleinschmidt, Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures, Proc. Nat. Acad. Sci. USA, 73:3852 (1976).

    Article  Google Scholar 

  9. U. Wild, K. Ramm, H.L. Sänger, and D. Riesner, Loops in viroids, Eur. J. Biochem., 103:227 (1980).

    Article  Google Scholar 

  10. D. Riesner, J.M. Kaper, and J.W. Randies, Stiffness of viroids and viroid-like RNA in solution, Nucl. Acids Res., 10:5587 (1982).

    Article  Google Scholar 

  11. T.C. Goodman, L. Nagel, W. Rappold, G. Klotz, and D. Riesner, Viroid replication: Equilibrium association constants and comparative activity measurements for the viroid-polymerase interaction, Nucl. Acids Res., 12:6231 (1984).

    Article  Google Scholar 

  12. H.J. Gross, H.L. Sänger, J. Schumacher, G. Steger, and D. Riesner, Viroids: Their structure and possible origin, in: “Endocytobiology”, vol. II, H.E.A. Schenk, W. Schwemmler, ed., de Gruyter, Berlin.

    Google Scholar 

  13. R. Nussinov and I. Tinoco, Small changes in free energy assignments for unpaired bases do not affect predicted secondary structures in single stranded RNA, Nucl. Acids Res., 10:341 (1982).

    Article  Google Scholar 

  14. G. Steger, H. Hofmann, J. Förtsch, H.J. Gross, J.W. Randies, H.L. Sänger, and D. Riesner, Conformational transitions in viroids and virusoids: Comparison of results from energy minimization algorithm and from experimental data, J. Biomolec. Struct. Dynamics, 2:543 (1984).

    Google Scholar 

  15. D. Pörschke, O. C. Uhlenbeck, and F. H. Martin, Thermodynamics and kinetics of the helix-coil transition of oligomers containing GC base pairs, Biopolymers, 12:1313 (1973).

    Article  Google Scholar 

  16. J. Gralla and D.M. Crothers, Free energy of imperfect nucleic acid helices, J. Mol Biol., 73:497 (1973).

    Article  Google Scholar 

  17. J. Gralla and D.M. Crothers, Free energy of imperfect nucleic acid helices. III. Small internal loops resulting from mismatches, J. Mol. Biol., 78:301 (1973).

    Article  Google Scholar 

  18. T.R. Fink and H. Krakauer, The enthalpy of the ‘bulge’ defect of imperfect nucleic acid helices, Biopolymers, 14:433 (1975).

    Article  Google Scholar 

  19. T.R. Fink and D.M. Crothers, Free energy of imperfect nucleic acid helices. I. The bulge effect, J. Mol. Biol. 66:1 (1972).

    Article  Google Scholar 

  20. J.R. Fresco, L.C. Klotz, and E.G. Richards, New spectroscopic approach to the determination of helical secondary structure in ribonucleic acids, Cold Spring Harb. Symp. Quant. Biol., 28:83 (1963).

    Article  Google Scholar 

  21. S.M. Coutts, Thermodynamics and kinetics of GC base pairing in the isolated extra arm of serine-specific tRNA from yeast, Biochem. Biophys. Acta, 232:94 (1971).

    Google Scholar 

  22. I. Tinoco, O.C. Uhlenbeck, and M.D. Levine, Estimation of secondary structure in ribonucleic acids, Nature, 230:362 (1971).

    Article  Google Scholar 

  23. J. Langowski, K. Henco, D. Riesner, and H. L. Sänger, Common structural features of different viroids: Serial arrangement of double helical sections and internal loops, Nucl. Acids Res., 5:1589 (1978).

    Article  Google Scholar 

  24. R. Nussinov, G. Pieczenik, J.R. Griggs, and D.J. Kleitman, Algorithms for loop matchings, SIAM J. Appl. Math., 35:68 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  25. R. Nussinov and A. Jacobson, Fast algorithm for predicting the secondary structure of single-stranded RNA, Proc. Natl. Acad. Sci. USA, 77:6309 (1980).

    Article  Google Scholar 

  26. M. Zuker and P. Stiegler, Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information, Nucl. Acids Res., 9:133 (1981).

    Article  Google Scholar 

  27. K. Henco, H.L. Sänger, D. Riesner, Fine structure melting of viroids as studied by kinetic methods, Nucl. Acids Res., 6:3041 (1979).

    Article  Google Scholar 

  28. J.W. Randies, G. Steger, and D. Riesner, Structural transitions in viroid-like RNAs associated with cadang-cadang disease, velvet tobacco mottle virus, and Solanum nodiflorum mottle virus, Nucl. Acids Res., 10:5569 (1982).

    Article  Google Scholar 

  29. F.M. Pohl, Einfache Temperatursprung-Methode im Sekunden-bis Stundenbereich und die reversible Denaturierung von Chymotrypsin, Eur. J. Biochem., 4:373 (1968).

    Article  Google Scholar 

  30. M. Eigen and L. DeMaeyer, Theoretical basis of relaxation spectroscopy, in “Techniques of Organic Chemistry”, Vol. VIII/2, A. Weissberger, ed., John Wiley, New York (1963).

    Google Scholar 

  31. K. Henco, G. Steger, and D. Riesner, Melting curves on less than 1μg of nucleic acid, Anal. Biochem., 101:255 (1980).

    Article  Google Scholar 

  32. D. Riesner, M. Colpan, and J.W. Randies, A microcell for the temperature-jump technique, Anal. Biochem., 121:186 (1982).

    Article  Google Scholar 

  33. H.J. Gross, G. Krupp, H. Domdey, M. Raba, P. Jank, Ch. Lossow, H. Alberty, K. Ramm, and H.L. Sänger, Nucleotide sequence and secondary structure of citrus exocortis and chrysanthemum stunt viroid, Eur. J. Biochem., 121:249 (1982).

    Article  Google Scholar 

  34. P. Palukaitis and R.H. Symons, Purification and characterization of the circular form of CSV, J. Gen. Virol., 46:477 (1980).

    Article  Google Scholar 

  35. M. Colpan, J. Schumacher, W. Brüggemann, H.L. Sänger, and D. Riesner, Large-scale purification of viroid RNA using Cs2SO4 gradient centrifugation and HPLC., Anal. Biochem., 131:257 (1983).

    Article  Google Scholar 

  36. G. Steger, H. Müller, and D. Riesner, Helix-coil transition in double-stranded viral RNA: fine resolution melting and ionic strength dependence, Biochem. Biophys. Acta, 606:274 (1980).

    Google Scholar 

  37. K. Henco, D. Riesner, and H.L. Sänger, Conformation of viroids, Nucl. Acids Res., 4:177 (1977).

    Article  Google Scholar 

  38. R.H. Symons, ASBV — primary sequence and proposed secondary structure, Nucl. Acids Res., 9:6527 (1981).

    Article  Google Scholar 

  39. J. Haseloff and R.H. Symons, Comparative sequence and structure of viroid-like RNAs of two plant viruses, Nucl. Acids Res. 10:3681 (1982).

    Article  Google Scholar 

  40. W.M. Fitch, Random sequences, J. Mol. Biol. 163:171 (1983).

    Article  Google Scholar 

  41. M. Schnölzer, B. Haas, K. Ramm, H. Hofmann, and H.L. Sänger, Correlation between structure and pathogenicity of PSTV, subm.

    Google Scholar 

  42. H.L. Sänger, Minimal infectious agents: the viroids, in: “The Microbe, Part I, Viruses”, B.W.J. Mahy and J.R. Pathison, ed., Cambridge University Press (1984).

    Google Scholar 

  43. J. Visvader and R.H. Symons, Eleven new sequence variants of CEV and the correlation of sequence with pathogenicity, Nucl. Acids Res. 13:2907 (1985).

    Article  Google Scholar 

  44. T.O. Diener, Are viroids escaped introns?, Proc. Natl. Acad. Sci. USA, 78:5014 (1981).

    Article  Google Scholar 

  45. D. Riesner, G. Steger, J. Schumacher, H.J. Gross, J.W. Randies, and H.L. Sänger, Structure and Function of viroids, Biophys. Struct. Mech., 9:145 (1983).

    Article  Google Scholar 

  46. P. Keese and R.H. Symons, Domains in viroids: evidence of intermolecular rearrangements and their contribution to viroid evolution, Proc. Natl. Acad. Sci. USA, 78:5014 (1981).

    Article  Google Scholar 

  47. T. Meshi, M. Ishikawa, Y. Watanabe, J. Yamaya, Y. Okada, T. Sano, and E. Shikata, The sequences necessary for the infectivity of hop stunt viroid cDNA clones, Mol. Gen. Genet., 200:199 (1985).

    Article  Google Scholar 

  48. M. Tabler and H.L. Sänger, Cloned single-and double-stranded DNA copies of PSTV RNA and co-inoculated subgenomic DNA fragments are infectious, EMBO J., 3:3055 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Steger, G., Rosenbaum, V., Riesner, D. (1986). Viroids: Structure Formation and Function. In: van Knippenberg, P.H., Hilbers, C.W. (eds) Structure and Dynamics of RNA. NATO ASI Series, vol 110. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5173-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5173-3_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5175-7

  • Online ISBN: 978-1-4684-5173-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics