Advertisement

Conformational Dynamics Involved in RNA Self-Splicing

  • Thomas R. Cech
  • Francis X. Sullivan
  • Tan Inoue
  • John M. Burke
  • Michael D. Been
  • N. Kyle Tanner
  • Arthur J. Zaug
Part of the NATO ASI Series book series (NSSA, volume 110)

Abstract

In some species of the ciliated protozoan, Tetrahymena, the genes for the large rRNA (ribosomal RNA) are interrupted by an IVS (intervening sequence or intron) approximately 400 base pairs in size (Wild and Gall, 1979). The genes are transcribed by RNA polymerase I to give a pre-rRNA that contains the IVS (Din et al., 1979; Cech and Rio, 1979). The pre-rRNA is then subject to an RNA processing reaction called RNA splicing, by which the IVS is excised and the exons or flanking sequences are ligated. RNA splicing is required for the expression of most mRNA genes and some rRNA and tRNA genes in the nuclei of eukaryotes, and is also involved in the expression of some mitochondrial and chloroplast genes.

Keywords

Splice Site Conformational Switch Guanosine Nucleotide Conserve Sequence Element Compensatory Base Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anziano, P. Q., Hanson, D. K., Mahler, H. R., and Perlman, P. S., 1982, Functional domains in introns: Trans-acting and cis-acting regions of intron 4 of the cob gene, Cell, 30:925.CrossRefGoogle Scholar
  2. Bass, B. L., and Cech, T. R., 1984, Specific interaction between the self-splicing RNA of Tetrahymena and its guanosine substrate: Implications for biological catalysis by RNA, Nature, 308:820.CrossRefGoogle Scholar
  3. Been, M. D., and Cech, T. R., 1985, Autocyclization of the Tetrahymena ribosomal RNA intervening sequence: Sequence requirements for splice site choice, manuscript submitted.Google Scholar
  4. Burke, J., and RajBhandary, U. L., 1982, Intron within the large rRNA gene of N. crassa mitochondria: A long open reading frame and a consensus sequence possibly important in splicing, Cell, 31:509.CrossRefGoogle Scholar
  5. Burke, J. M., Kaneko, K. J., Irvine, K. D., Oettgen, A. B., Zaug, A. J., and Cech, T. R., 1985, Role of conserved sequence elements 9L and 2 in self-catalyzed splicing of the Tetrahymena ribosomal RNA intervening sequence, manuscript submitted.Google Scholar
  6. Cech, T. R., 1983, RNA splicing: Three themes with variations, Cell, 34:713.CrossRefGoogle Scholar
  7. Cech, T. R., and Rio, D. C., 1979, Localization of transcribed regions on the extrachromosomal ribosomal RNA genes of Tetrahymena thermophila by R-loop mapping, Proc. Natl. Acad, Sci. USA, 76:5051.CrossRefGoogle Scholar
  8. Cech, T. R., Tanner, N. K., Tinoco, I., Jr., Weir, B. R., Zuker, M., and Perlman, P. S., 1983, Secondary structure of the Tetrahymena ribosomal RNA intervening sequence: Structural homology with fungal mitochondrial intervening sequences, Proc. Natl. Acad. Sci. USA, 80:3903.CrossRefGoogle Scholar
  9. Cech, T. R., Zaug, A. J., and Grabowski, P. J., 1981, In vitro splicing of the ribosomal RNA precursor of Tetrahymena: Involvement of a guanosine nucleotide in the excision of the intervening sequence, Cell, 27:487.CrossRefGoogle Scholar
  10. Davies, R. W., Waring, R. B., Ray, J. A., Brown, T. A., and Scazzocchio, C., 1982, Making ends meet: A model for RNA splicing in fungal mitochondria, Nature, 300:719.CrossRefGoogle Scholar
  11. De La Salle, H., Jacq, C., and Slonimski, P. P., 1982, Critical sequences within mitochondrial introns: Pleiotropic mRNA maturase and cis-dominant signals of the box intron controlling reductase and oxidase, Cell, 28:721.CrossRefGoogle Scholar
  12. Din, N., Engberg, J., Kaffenberger, W., and Eckert, W., 1979, The intervening sequence in the 26 S rRNA coding region of T. thermophila is transcribed within the largest stable precursor for rRNA, Cell, 18:525.CrossRefGoogle Scholar
  13. Garriga, G., and Lambowitz, A. M., 1984, RNA splicing in Neurospora mitochondria: Self-splicing of a mitochondrial intron in vitro, Cell, 39:631.CrossRefGoogle Scholar
  14. Inoue, T., and Cech, T. R., 1985, Secondary structure of the circular form of the Tetrahymena ribosomal RNA intervening sequence: A new technique for RNA secondary structure analysis using chemical probes and reverse transcriptase, Proc. Natl. Acad. Sci. USA, 82:648.CrossRefGoogle Scholar
  15. Inoue, T., Sullivan, F. X., and Cech, T. R., 1985a, New reactions of the ribosomal RNA precursor of Tetrahymena and the mechanism of self-splicing, manuscript submitted.Google Scholar
  16. Inoue, T., Sullivan, F. X., and Cech, T. R., 1985b, Intermolecular exon ligation of the rRNA precursor of Tetrahymena: Oligonucleotides can function as 5’ exons, manuscript submitted.Google Scholar
  17. Kruger, K., Grabowski, P. J., Zaug, A. J., Sands, J., Gottschling, D. E., and Cech, T. R., 1982, Self-splicing RNA: Autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena, Cell, 31:147.CrossRefGoogle Scholar
  18. Michel, F., and Dujon, B., 1983, Conservation of RNA secondary structures in two intron families including mitochondrial-, chloroplast-, and nuclear-encoded members, EMBO J., 2:33.Google Scholar
  19. Michel, F., Jacquier, A., and Dujon, B., 1982, Comparison of fungal mitochondrial introns reveals extensive homologies in RNA secondary structure, Biochimie, 64:867.CrossRefGoogle Scholar
  20. Sullivan, F. X., and Cech, T. R., 1985, Reversibility of Cyclization of the Tetrahymena rRNA intervening sequence: Implication for the mechanism of splice-site choice, Cell, in press.Google Scholar
  21. Tabak, H. F., Van der Horst, G., Osinga, K. A., and Arnberg, A. C., 1984, Splicing of large ribosomal precursor RNA and processing of intron RNA in yeast mitochondria, Cell, 39:623.CrossRefGoogle Scholar
  22. Tanner, N. K., and Cech, T. R., 1985a, A Self-catalyzed cyclization of the intervening sequence RNA of Tetrahymena: Inhibition by intercalating dyes, Nucleic Acids Res., in press.Google Scholar
  23. Tanner, N. K., and Cech, T. R., 1985b, Self-catalyzed cyclization of the intervening sequence RNA of Tetrahymena: Inhibition of intercalating dyes, Nucleic Acids Res., in press.Google Scholar
  24. Van der Horst, G., and Tabak, H. F., 1985, Self-splicing of yeast mitochondrial precursor RNA, Cell, 40:759.CrossRefGoogle Scholar
  25. Waring, R. B., Scazzocchio, C., Brown, T. A., and Davies, R. W., 1983, Close relationship between certain nuclear and mitochondrial introns, J. Mol. Biol., 167:595.CrossRefGoogle Scholar
  26. Wild, M. A., and Gall, J. G., 1979, An intervening sequence in the gene coding for 25 S ribosomal RNA of Tetrahymena pigmentosa, Cell, 16:565.CrossRefGoogle Scholar
  27. Zaug, A. J., and Cech, T. R., 1985, Oligomerization of intervening sequence RNA molecules in the absence of proteins, Science, in press.Google Scholar
  28. Zaug, A. J., Grabowski, P. J., and Cech, T. R., 1983, Autocatalytic cyclization of an excised intervening sequence is a cleavage-ligation reaction, Nature, 301:578.CrossRefGoogle Scholar
  29. Zaug, A. J., Kent, J. R., and Cech, T. R., 1984, A labile phosphodiester bond at the ligation junction in a circular intervening sequence, Science, 224:574.CrossRefGoogle Scholar
  30. Zaug, A. J., Kent, J. R., and Cech, T. R., 1985, Reactions of the intervening sequence of the Tetrahymena ribosomal ribonucleic acid precursor: pH dependence of cyclization and site-specific hydrolysis, Biochemistry, in press.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Thomas R. Cech
    • 1
  • Francis X. Sullivan
    • 1
  • Tan Inoue
    • 1
  • John M. Burke
    • 1
  • Michael D. Been
    • 1
  • N. Kyle Tanner
    • 1
  • Arthur J. Zaug
    • 1
  1. 1.Department of Chemistry and BiochemistryUniversity of ColoradoBoulderUSA

Personalised recommendations