Advertisement

Ribosomal RNA at the Decoding Site of the tRNA-Ribosome Complex

  • James Ofengand
  • Jerzy Ciesiolka
  • Kelvin Nurse
Part of the NATO ASI Series book series (NSSA, volume 110)

Abstract

Until recently, the protein components of the ribosome were considered to be the functional entities, the ribosomal RNA (rRNA) being viewed as merely a scaffold upon which the proteins were arranged. This view had its origin in part from the expectation that the proteins, by analogy with soluble enzymes, would play the crucial role in recognition of tRNA as well as in other ribosomal functions. It also was based on the fact that the early affinity labeling experiments identified primarily proteins (Ofengand, 1980). More recently, however, direct evidence for the proximity of rRNA at functional sites on the ribosome has been obtained (reviewed in Ofengand et al., 1984; 1985). The first demonstration that rRNA could be closely associated with a functional site was the crosslinking of 23S RNA by peptidyl transferase center-affinity labels (reviewed in Ofengand, 1980), although the exact site of crosslinking was not identified until very recently (Barta et al., 1984). The second example of rRNA proximity at a functional center, and the first case in which the exact nucleotide was identified, was the discovery of the close contact between C-1400 of Escherichia coli 16S RNA and the anticodon of P site bound tRNA at the decoding site (Ofengand et al., 1979; Prince et al., 1982). Subsequently, a nearby residue, C-1409, was shown to be indirectly involved in codon recognition(Li et al., 1982), and the not too distant G-1322 was found to be crosslinkable to S12 (Chiaruttini et al., 1982), a protein in contact with mRNA. The mRNA base-pairing region, A-1531 to A-1542 (Gold et al., 1981), is also not far from C-1400 in the 16S RNA secondary structure. However, G-462 and G-474, which were placed at the decoding site by Wagner et al. (1976) are quite distant. This latter result may be indicative of tertiary folding of rRNA within the subunit.

Keywords

Anticodon Loop Aryl Azide Codon Recognition Exact Nucleotide Decode Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, S., Bankier, A.T., Barrell, B.G., deBruijn, M.H.L., Coulson, A.R., Drouin, J., Eperon, I.C., Nierlich, D.P., Roe, B. A., Sanger, F., Schreier, P.M.H., Smith, A. J.H., Staden, R., and Young, I.G., 1981, Nature (London) 290:457–464.CrossRefGoogle Scholar
  2. Anderson, S., de Bruijn, M.H.L., Coulson, A.R., Eperon, I.C., Sanger, F., and Young, I.G., 1982, J. Mol. Biol. 156:683–717.CrossRefGoogle Scholar
  3. Arnott, S., Chandrasekaran, R., and Seising, E., 1975, in: Structure and Conformation of Nucleic Acids and Protein-Nucleic Acid Interactions (Sundaralingam, M., Rao, S.T., eds.), pp. 577–596, University Park Press, Baltimore, MD.Google Scholar
  4. Atmadja, J., Brimacombe, R., and Maden, B.E.H., 1984, Nucleic Acids Res. 12:2649–2667.CrossRefGoogle Scholar
  5. Baer, R., and Dubin, D.T., 1980, Nucleic Acids Res. 8:4927–4941.CrossRefGoogle Scholar
  6. Balch, W.E., Fox, G.E., Magrum, L.J., Woese, C.R., and Wolfe, R.S., 1979, Microbiol. Rev. 43:260–296.Google Scholar
  7. Barta, A., Steiner, G., Brosius, J., Noller, H.F., and Kuechler, E., 1984, Proc. Natl. Acad. Sci. USA 81, 3607–3611.CrossRefGoogle Scholar
  8. Bibb, M.J., Van Etten, R.A., Wright, C.T., Walberg, M.W., and Clayton, D.A., 1981, Cell 26:167–180.CrossRefGoogle Scholar
  9. Brimacombe, R., Maly, P., and Zwieb, C., 1983, Progr. Nucl. Acid. Res. Mol. Biol. 28:1–48.CrossRefGoogle Scholar
  10. Brosius, J., Palmer, M.L., Kennedy, J.P., and Noller, H.F., 1978, Proc. Natl. Acad. Sci. USA 75:4801–4805.CrossRefGoogle Scholar
  11. Carbon, P., Ehresmann, C., Ehresmann, B., and Ebel, J.-P., 1979, Eur. J. Biochem. 100:399–410.CrossRefGoogle Scholar
  12. Carbon, P., Ebel, J.P., and Ehresmann, C., 1981, Nucleic Acids Res. 9:2325–2333.CrossRefGoogle Scholar
  13. Chan, Y-L., Gutell, R., Noller, H.F., and Wool, I.G., 1984, J. Biol. Chem. 259:224–230.Google Scholar
  14. Chao, S., Sederoff, R., and Levings III, C.S., 1984, Nucleic Acids Res. 12:6629–6644CrossRefGoogle Scholar
  15. Chiaruttini, C., Expert-Bezancon, A., Hayes, D., and Ehresmann, B., 1982, Nucleic Acids Res. 10:7657–7676.CrossRefGoogle Scholar
  16. Ciesiolka, J., Gornicki, P., and Ofengand, J., 1985a, Biochemistry, (in press).Google Scholar
  17. Ciesiolka, J., Nurse, K., Klein, J., and Ofengand, J., 1985b, Biochemistry 24:3233–3239.CrossRefGoogle Scholar
  18. Clary, D.O., and Wolstenholme, D.R., 1985, Nucleic Acids Res. 13:4029–4045.CrossRefGoogle Scholar
  19. Connaughton, J.F., Rairkar, A., Lockard, R.E., and Kumar, A., 1984, Nucleic Acids Res. 12:4731–4745.CrossRefGoogle Scholar
  20. de la Cruz, V.F., Lake, J.A., Simpson, A.M., and Simpson, L., 1985, Proc. Natl. Acad. Sci. USA 82:1401–1405.CrossRefGoogle Scholar
  21. Douthwaite, S., Christensen, A., and Garrett, R.A., 1983, J. Mol. Biol. 169:249–279.CrossRefGoogle Scholar
  22. Dron, M., Rahire, M., and Rochaix, J.-D., 1982, Nucleic Acids Res. 10:7609–7620.CrossRefGoogle Scholar
  23. Dubin, D.T., and HsuChen, C.C., 1983, Plasmid 9:307–320.CrossRefGoogle Scholar
  24. Ehresmann, C., Ehresmann, B., Millon, R., Ebel, J.-P., Nurse, K., and Ofengand, J., 1984, Biochemistry 23:429–437.CrossRefGoogle Scholar
  25. Ehresmann, C., and Ofengand, J., 1984, Biochemistry 23:438–445.CrossRefGoogle Scholar
  26. Eperon, I.C., Anderson, S., and Nierlich, D.P., 1980, Nature 286:460–467.CrossRefGoogle Scholar
  27. Fuller, W., and Hodgson, A., 1967, Nature 215:817–821.CrossRefGoogle Scholar
  28. Gold, L., Pribnow, D., Schneider, T., Shinedling, S., Singer, B.S., and Storno, G., 1981, Ann. Rev. Microbiol., 35:365–403.CrossRefGoogle Scholar
  29. Gornicki, P., Nurse, K., Helmann, W., Boublik, M., and Ofengand, J., 1984, J. Biol. Chem. 259:10493–10498.Google Scholar
  30. Gornicki, P., Ciesiolka, J., and Ofengand, J., 1985, Biochemistry (in press)Google Scholar
  31. Graf, L., Roux, E., and Stutz, E,, 1982, Nucleic Acids Res. 10:6369–6381.CrossRefGoogle Scholar
  32. Gupta, R., Lanter, J.M., and Woese, C.R., 1983, Science 221:656–659CrossRefGoogle Scholar
  33. Herr, W., Chapman, N.M., and Noller, H.F., 1979, J. Mol. Biol. 130:433–449.CrossRefGoogle Scholar
  34. Hogan, J.J., Gutell, R.R., and Noller, H.F., 1984, Biochemistry 23:3322–3330.CrossRefGoogle Scholar
  35. Iwami, M., Muto, A., Yamao, F., and Osawa, S., 1984, Mol. Gen. Genet. 196:317–322.CrossRefGoogle Scholar
  36. Jarsch, M., and Bock, A., 1985, Syst. Appl. Microbiol. (in press).Google Scholar
  37. Jordan, B.R., Latil-Damotte, M., and Jourdan, R., 1980, FEBS Lett. 117:227–231.CrossRefGoogle Scholar
  38. Keren-Zur, M., Boublik, M., and Ofengand, J., 1979, Proc. Natl. Acad. Sci. USA 76:1054–1058.CrossRefGoogle Scholar
  39. Kobayashi, M., Seki, T., Yaginuma, K., and Koiko, K., 1981, Gene 16:297–307.CrossRefGoogle Scholar
  40. Kop, J., Kopylov, A.M., Magrum, L., Siegel, R., Gupta, R., Woese, C.R., and Noller, H.F., 1984, J. Biol. Chem. 259:15287–15293.Google Scholar
  41. Köchel, H.G., and Küntzel, H., 1981, Nucleic Acids Res. 9:5689–5696.CrossRefGoogle Scholar
  42. Leffers, H., and Garrett, R., 1984, EMBO J. 3:1613–1619.Google Scholar
  43. Li, M., Tzagoloff, A., Underbrink-Lyon, K., and Martin, N.C., 1982, J. Biol. Chem. 257:5921–5928.Google Scholar
  44. Lührmann, R., Stöffler-Meilicke, M., and Stöffler, G., 1981, Mol. Gen. Genet. 182:369–376.CrossRefGoogle Scholar
  45. Magrum, L.J., Luehrsen, K.R., and Woese, C.R., 1978, J. Mol. Evol. 11:1–8.CrossRefGoogle Scholar
  46. Mankin, A.S., Kopylov, A.M., and Bogdanov, A.A., 1981, FEBS Lett. 134:11–14.CrossRefGoogle Scholar
  47. McCarroll, R., Olsen, G.J., Stahl, Y.D., Woese, C.R., and Sogin, M.L., 1983, Biochemistry 22:5858–5868.CrossRefGoogle Scholar
  48. Meier, N., and Wagner, R., 1984, Nucleic Acids Res. 12:1473–1487.CrossRefGoogle Scholar
  49. Meier, N., and Wagner, R., 1985, Eur. J. Biochem. 146:83–87.CrossRefGoogle Scholar
  50. Messing, J., Carlson, J., Hagen, G., Rubenstein, I., and Oleson, A., 1984, DNA 3:31–40.CrossRefGoogle Scholar
  51. Moazed, D., Stern, S., and Noller, H.F., 1985, (personal communication).Google Scholar
  52. Mochalova, L.V., Shatsky, I.N., Bogdanov, A.A., and Vasiliev, V.D., 1982, J. Mol. Biol. 159:637–650.CrossRefGoogle Scholar
  53. Nelles, L., Fang, B.-L., Volckaert, G., and Vanden, R., 1984, Nucleic Acids Res. 12:8749–8768.CrossRefGoogle Scholar
  54. Noller, H.F., 1984, Ann. Rev. Biochem. 53:119–162.CrossRefGoogle Scholar
  55. Ofengand, J., Liou, R., Kohut, III, J., Schwartz, I., and Zimmermann, A., 1979, Biochemistry 18:4322–4332.CrossRefGoogle Scholar
  56. Ofengand, J., 1980, in: Ribosomes: Structure, Function, and Genetics (Chambliss, G., Craven, G., Davies, J., Davis, K., Kahan, L. and Nomura, M., eds.), pp. 497–529, University Park Press, Baltimore, MD.Google Scholar
  57. Ofengand J., Gornicki, P., Nurse, R., and Boublik, M., 1984, On the structural organization of the tRNA-ribosome complex, in: The Translational Step and Its Control (B.F.C. Clark and H.U. Petersen, eds.) pp. 293–315, Munksgaard, Copenhagen.Google Scholar
  58. Ofengand, J., Ciesiolka, J., Gornicki, P., and Nurse, K., 1985, in: Structure, Function and Genetics of Ribosomes (B. Hardesty and G. Kramer, eds.), Springer-Verlag, New York (in press).Google Scholar
  59. Ofengand, J., and Liou, R., 1980, Biochemistry 19:4814–4822.CrossRefGoogle Scholar
  60. Ofengand, J., and Liou, R., 1981, Biochemistry 20:552–559.CrossRefGoogle Scholar
  61. Ofengand, J., Gornicki, P., Chakraburtty, K., and Nurse, K., 1982, Proc. Natl. Acad. Sci. USA 79:2817–2821.CrossRefGoogle Scholar
  62. Olson, H.M., and Glitz, D.G., 1979, Proc. Natl. Acad. Sci. USA 76:3769–3773.CrossRefGoogle Scholar
  63. Politz, S.M., and Glitz, D.G., 1977, Proc. Natl. Acad. Sci. USA 74:1468–1472.CrossRefGoogle Scholar
  64. Prince, J.B., Taylor, B.H., Thurlow, D.L., Ofengand, J., and Zimmermann, R.A., 1982, Proc. Natl. Acad. Sci. USA 79:5450–5454.CrossRefGoogle Scholar
  65. Raynal, F., Michot, B., and Bachellerie, J.-P., 1984, FEBS Lett. 167: 263–268.CrossRefGoogle Scholar
  66. Roe, B.A., Ma, D-P., Wilson, R.K., and Wong, J.F-H., 1985, J. Biol. Chem. 260:9759–9774.Google Scholar
  67. Rubtsov, P.M., Musakhanov, M.M., Zakharyev, V.M., Krayev, A.S., Skryabin, K.G., and Bayev, A.A., 1980, Nucleic Acids Research 8:5779–5794.CrossRefGoogle Scholar
  68. Salim, M.,, and Maden, B.E.H., 1981, Nature 291:205–208.CrossRefGoogle Scholar
  69. Samols, D.R., Hagenbuchle, O., and Gage, L.P., 1979, Nucleic Acids Res. 7:1109–1119.CrossRefGoogle Scholar
  70. Sanger, F., Air, G.M., Barrell, B.G., Brown, N.L., Coulson, A.R., Fiddes, J.C., Hutchison III, C.A., Slocoinbe, P.M., and Smith, M., 1977, Nature 265:687–695.CrossRefGoogle Scholar
  71. Schwarz, Z., and Kössel, H., 1980, Nature 283:739–742.CrossRefGoogle Scholar
  72. Schwartz, I., and Ofengand, J., 1978, Biochemistry 17:2524–2530.CrossRefGoogle Scholar
  73. Seewaldt, E., and Stackenbrandt, E., 1982, Nature (London) 295:618–620.CrossRefGoogle Scholar
  74. Seilhamer, J. J., Olsen, G.J., and Cummings, D, J., 1984, J. Biol. Chem. 259:5167–5172.Google Scholar
  75. Shatsky, I.N., Mochalova, L.V., Kojouharova, M.S., Bogdanov, A.A., and Vasiliev, V.D., 1979, J. Mol. Biol. 133:501–515.CrossRefGoogle Scholar
  76. Sloof, P., Vanden Burg, J., Voogd, A., Benne, R., Agostinelli, M., Borst, P., Gutell, R., and Noller, H. (1985) Nucleic Acids Res. 13:4171–4190.CrossRefGoogle Scholar
  77. Sor, F., and Fukuhara, H., 1980, C.R. Acad. Sci. Paris, 291:933–936.Google Scholar
  78. Spangler, E.A., and Blackburn, E.H., 1985, J. Biol. Chem. 260:6334–6340.Google Scholar
  79. Spencer, D.F., Schnare, M.N., and Gray, M.W., 1984, Proc. Natl. Acad. Sci. USA 81:493–497.CrossRefGoogle Scholar
  80. Spirin, A.S., and Lim, V.I., 1985, in:. Structure, Function and Genetics of Ribosomes (B. Hardesty and G. Kramer, eds.) Springer-Verlag, New York (in press).Google Scholar
  81. Steiner, G., Luhrmann, R., and Kuechler, E., 1984, Nucleic Acids Res. 12:8181–8191.CrossRefGoogle Scholar
  82. Stöffler-Meilicke, M., Stöffler, G., Odom, O.W., Zinn, A., Kramer, G., and Hardesty, B., 1981, Proc. Natl. Acad. Sci. USA 78:5538–5542.CrossRefGoogle Scholar
  83. Stöffler, G., and Stöffler-Meilicke, M., 1981, International Cell Biology 1980/81 (H.G. Schweiger, ed.), Springer Verlag, Berlin, Heidelberg, New York, 93–102.Google Scholar
  84. Stöffler, G., and Stöffler-Meilicke, M., 1984, Ann. Rev. Biophys. Bioeng. 13:303–330.CrossRefGoogle Scholar
  85. Sundaralingam, M., Brennan, T., Yathindra, N., and Ichikawa, T., 1975, in: Structure and Conformation of Nucleic Acids and Protein-Nucleic Acid Interactions (Sundaralingam, M., Rao, S.T., eds.), pp. 101–105, University Park Press, Baltimore, MD.Google Scholar
  86. Takaiwa, F., Oono, K., and Sugiura, M., 1984, Nucleic Acids Res. 12:5441–5448.CrossRefGoogle Scholar
  87. Tohdoh, N., and Sugiura, M., 1982, Gene 17:213–218.CrossRefGoogle Scholar
  88. Tomioka, N., and Sugiura, M., 1983, Mol. Gen. Genet. 191:46–50.CrossRefGoogle Scholar
  89. Torczynski, Bollon, A.P., and Fuke, M., 1983, Nucleic Acids Res. 11: 4879–4890.CrossRefGoogle Scholar
  90. Trempe, M.R., Ohgi, K., and Glitz, D.G., 1982, J. Biol. Chem. 257:9822–9829.Google Scholar
  91. Van Stolk, B.J., and Noller, H.F., 1984, J. Mol. Biol. 180:151–177.CrossRefGoogle Scholar
  92. Verschoor, A., Frank, J., Radermacher, M., Wagenknecht, T., and Boublik, M., 1984, J. Mol. Biol. 178:677–698.CrossRefGoogle Scholar
  93. Wagner, R., Gassen, H.G., Ehresmann, C., Stiegler, P., and Ebel, J.-P., 1976, FEBS Lett. 67:312–315.CrossRefGoogle Scholar
  94. Woese, C.R., Maniloff, J., and Zablen, L.B., 1980, Proc. Natl. Acad. Sci. USA 77:494–498.CrossRefGoogle Scholar
  95. Yang, D., Oyaizu, Y., Oyaizu, H., Olsen, G.J., and Woese, C.R., 1985, Proc. Natl. Acad. Sci. USA 82:4443–4447.CrossRefGoogle Scholar
  96. Yathindra, N., and Sundaralingam, M., 1975, in: Structure and Conformation of Nucleic Acids and Protein-Nucleic Acid Interactions (Sundaralingam, M., Rao, S.T., eds.), pp. 649–676, University Park Press, Baltimore, MD.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • James Ofengand
    • 1
  • Jerzy Ciesiolka
    • 1
  • Kelvin Nurse
    • 1
  1. 1.Roche Institute of Molecular BiologyRoche Research CenterNutleyUSA

Personalised recommendations