Advertisement

The Extremely Small Mitochondrial Ribosomal RNAs from Trypanosomes

  • P. Sloof
  • R. Benne
  • B. F. De Vries
Part of the NATO ASI Series book series (NSSA, volume 110)

Summary

The mitochondrial 9S and 12S RNAs from trypanosomes are the smallest known ribosomal RNAs (about 600 and 1150 nucleotides in length, respectively) and they exhibit the most extreme A+U content (80%). The nucleotide sequences of the genes for the 9S and 12S RNAs from three trypanosome species, Trypanosoma brucei, Crithidia fasciculata and Leishmania tarentolae have recently been determined. In this paper we identify primary and secondary stuctures in the trypanosomal 9S and 12S RNA molecules which are highly conserved among ribosomal RNAs from members of the three Primary Kingdoms. The presence of these conserved structural elements in the otherwise highly diverged trypanosomal mitochondrial ribosomal RNAs, indicates their fundamental role in ribosome function.

Keywords

Secondary Structure Secondary Structure Element Trypanosoma Brucei Small Subunit rRNAs Mitochondrial Protein Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Noller, H.F., Structure of ribosomal RNA, Ann.Rev.Biochem., 53:119–162 (1984).CrossRefGoogle Scholar
  2. 2.
    Maly, P.R. and Brimacombe, R., Refined secondary structure models for the 16S and 23S ribosomal RNA of Escherichia coli, Nucl.Acids Res., 11:7263–7286 (1983).CrossRefGoogle Scholar
  3. 3.
    Sloof, P., Van den Burg, J., Voogd, A., Benne, R., Agostinelli, M., Borst, P., Gutell, R. and Noller, H.F., Further characterization of the extremely small mitochondrial ribosomal RNAs from trypanosomes: a detailed comparison of the 9S and 12S RNAs from Crithidia fasciculata and Trypanosoma brucei with rRNAs from other organisms, Nucl.-Acids Res., 13: 4171–4190 (1985).CrossRefGoogle Scholar
  4. 4.
    De la Cruz, V.F., Lake, J.A., Simpson, A.M., and Simpson, L., A minimal ribosomal RNA: Sequence and secondary structure of the 9S kinetoplast ribosomal RNA from Leishmania tarentolae, Proc.Natl.Acad.Sci.USA, 82:1401–1405 (1985).CrossRefGoogle Scholar
  5. 5.
    De la Cruz, V.F., Simpson, A.M., Lake, J.A., Simpson, L., Primary sequence and partial secondary structure of the 12S kinetoplast (mitochondrial) ribosomal RNA from Leishmania tarentolae: conservation of peptidyl-transferase structural elements, Nucl.Acids Res., 13:2337–2356 (1985)CrossRefGoogle Scholar
  6. 6.
    Eperon, I.C., Janssen, J.W.G., Hoeijmakers, J.H.J. and Borst, P., The major transcripts of the kinetoplast DNA of Trypanosoma brucei are very small ribosomal RNAs, Nucl.Acids Res., 11:105–125 (1983).CrossRefGoogle Scholar
  7. 7.
    Woese, C.R., Gutell, R., Guptas, R. and Noller, H.F., Detailed analysis of the higher-order structure of 16S-like ribosomal ribonucleic acids, Microbiol.Rev. 47:621–669 (1983).Google Scholar
  8. 8.
    Noller, H.F., Secondary structure model for 23S ribosomal RNA, Nucl.Acids Res., 9:6167–6189 (1981).CrossRefGoogle Scholar
  9. 9.
    Woese, C.R., Fox, G.E., Zabler, L., Uchida, T., Bonen, L., Pechman, K., Lewis, B.J. and Stahl, D., Conservation of primary structure in 16S ribosomal RNA, Nature 254:83–86 (1975).CrossRefGoogle Scholar
  10. 10.
    Eperon, I.C., Anderson, S. and Nierlich, D.P., Distinctive sequence of human mitochondrial ribosomal RNA genes, Nature 288:60–63 (1980).CrossRefGoogle Scholar
  11. 11.
    Anderson, S., De Bruijn, M.H.L., Coulson, A.R., Eperon, I.C., Sanger, F. and Young, I.G., Complete sequence of bovine mitochondrial DNA. Conserved features of the mammalian mitochondrial genome, J.Mol.Biol., 156:683–717 (1982).CrossRefGoogle Scholar
  12. 12.
    Prince, J.B., Taylor, B.H., Thurlow, A.L., Ofengand, J. and Zimmerman, R.A., Covalent crosslinking of tRNAyal to 16S RNA at the ribosomal P site: Identification of crosslinked residues, Proc.Natl.Acad.Sci.USA 79:5450–5454 (1982).CrossRefGoogle Scholar
  13. 13.
    Seilhamer, J.J., Olsen, G.J. and Cummings, D.J., Paramecium mitochondrial genes I: small subunit rRNA gene sequence and micro-evolution, J.Biol.Chem., 259: 5167–5172 (1984).Google Scholar
  14. 14.
    Van Knippenberg, P.H., Van Kimmenade, J.M.A. and Heus, H.A., Phylogeny of the conserved 3’ terminal structure of the RNA of small ribosomal subunits, Nucl.Acids Res., 12:2592–2604 (1984).Google Scholar
  15. 15.
    Boer, P.H., McIntosh, J.E., Gray, M.W. and Bonen, L., The wheat mitochondrial gene for apocytochrome b: absence of a prokaryotic ribosome binding site, Nucl.Acids Res., 13:2281–2292 (1985).CrossRefGoogle Scholar
  16. 16.
    Schindler, D.G. and Davies, J.E., Specific cleavage of ribosomal RNA caused by alpha sarcin, Nucl.Acids Res., 4:1097–1110 (1977).CrossRefGoogle Scholar
  17. 17.
    Chan, Y.L., Endo, Y. and Wool, I.G., The sequence of the nucleotides at the alpha-sarcin cleavage site in rat 28S ribosomal ribonucleic acid, J.Biol.Chem., 258: 12768–12770 (1983).Google Scholar
  18. 18.
    Fernandez-Puentes, L. and Vasquez, D., Effects of some proteins that inactivate the eukaryotic ribosome, FEBS Lett., 78:143–146 (1977).CrossRefGoogle Scholar
  19. 19.
    Garrett, R.A., Christensen, A. and Douthwaite, S., Higher order structure in the 3’-terminal domain VI of the 23S ribosomal RNAs from Escherichia coli and Bacillus stearothermophilus, J.Mol.Biol., 179: 689–712 (1984).CrossRefGoogle Scholar
  20. 20.
    Barta, A., Steiner, G., Brosius, J., Noller, H.F. and Kuechler, E., Identification of a site on 23S ribosomal RNA located at the peptidyl transferase center, Proc.Natl.Acad.Sci.USA 81:3607–3611 (1984).CrossRefGoogle Scholar
  21. 21.
    Branlant, C., Krol, A., Machatt, M.A., Pouyet, J. and Ebel, J.P., Primary and secondary structures of E.coli MRE600 23S ribosomal RNA. Comparison with models of secondary structure for maize chloroplast 23S rRNA and for large portions of mouse and human 16S mitochondrial rRNAs, Nucl.Acids Res., 9:4303–4324 (1981).CrossRefGoogle Scholar
  22. 22.
    Dujon, B., Sequence of the intron and flanking exons of the mitochondrial 23S rRNA gene of yeast strains having different alleles at the rib-1 loci, Cell 20:185–197 (1980).CrossRefGoogle Scholar
  23. 23.
    Blanc, H., Adams, C.W and Wallace, D.C., Different nucleotide changes in the large rRNA gene of the mitochondrial DNA confer chloramphenicol resistance on two human cell lines, Nucl.Acids Res., 9:5785–5795 (1981).CrossRefGoogle Scholar
  24. 24.
    Blanc, H., Wright, C.T., Bibb, M.J., Wallace, D.C. and Clayton, D.A. Mitochondrial DNA of chloramphenicol-resistant mouse cells contain a single nucleotide change in the region encoding the 3’ end of the large ribosomal RNA, Proc.Natl.Acad.Sci.USA 78:3789–3793 (1981).CrossRefGoogle Scholar
  25. 25.
    Kearsey, S.E. and Craig, I.W., Altered ribosomal RNA genes in mitochondria from mammalian cells with chloramphenicol resistance, Nature 290:607–608 (1981).CrossRefGoogle Scholar
  26. 26.
    Sor, F. and Fukuhara, H., Identification of two erythromycin resistance mutations in the mitochondrial gene coding for the large ribosomal RNA in yeast, Nucl.Acids Res., 10:6571–6577 (1982).CrossRefGoogle Scholar
  27. 27.
    Benne, R., Agostinelli, M., De Vries, B.F., Van den Burg, J., Klaver, B. and Borst, P., Gene expression and organization in trypanosome mitochondria, in: Mitochondria 1983: Nucleo-Mitochondrial Interactions (R.J. Schweyen, K. Wolf and F. Kaudewitz, eds), De Gruyter, Berlin, pp. 285–302 (1983).Google Scholar
  28. 28.
    Glotz, C., Zwieb, C., Brimacombe, R., Edwards, K. and Kössel, H., Secondary structure of the large subunit ribosomal RNA from E.coli, Z.mays chloroplast and human and mouse mitochondrial ribosomes, Nucl.Acids Res., 9: 3287–3306 (1981).CrossRefGoogle Scholar
  29. 29.
    Borst, P. and Hoeijmakers, J.H.J., Kinetoplast DNA, Plasmid 2:20–40 (1979).CrossRefGoogle Scholar
  30. 30.
    Benne, R., Mitochondrial genes in trypanosomes, Trends in Genetics 1:117–121 (1985).CrossRefGoogle Scholar
  31. 31.
    Benne, R., De Vries, B.F., Van den Burg, J. and Klaver, B., The nucleotide sequence of a segment of Trypanosoma brucei mitochondrial maxi-circle DNA that contains the gene for apocytochrome b and some unusual unassigned reading frames, Nucl.Acids Res., 11, 6926–6941 (1982).Google Scholar
  32. 32.
    Hensgens, L.A.M., Brakenhoff, J., De Vries, B.F., Sloof, P., Tromp, M.C., Van Boom, J.H. and Benne, R., The sequence of the gene for cytochrome c oxidase subunit I, a frameshift containing gene for cytochrome c oxidase subunit II and seven unassigned reading frames of Trypanosoma brucei mitochondrial maxi-circle DNA, Nucl.Acids Res., 12:7327–7344 (1984).CrossRefGoogle Scholar
  33. 33.
    De la Cruz, V.F., Neckelmann, N. and Simpson, L., Sequences of six genes and several open reading frames in the kinetoplast maxicircle DNA of Leishmania tarentolae, J.Biol.Chem., 259: 15130–15147 (1984).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • P. Sloof
    • 1
  • R. Benne
    • 1
  • B. F. De Vries
    • 1
  1. 1.Section for Molecular Biology/AMC, Laboratory of BiochemistryUniversity of Amsterdam, Academic Medical CenterAmsterdamThe Netherlands

Personalised recommendations