The Three-Dimensional Organization of Escherichia Coli Ribosomal RNA

  • Richard Brimacombe
Part of the NATO ASI Series book series (NSSA, volume 110)


The structural analysis of a large RNA molecule proceeds in the four obvious stages of determining first the primary, then the secondary, then the tertiary structure, and finally — if the molecule is part of a multicomponent system — the quaternary structure. In the case of the ribosomal RNA molecules of Escherichia coli, current research is focussed on the last two of these stages. The primary structures of the 16S and 23S RNA have been known for some time, and secondary structures for both molecules have been derived by a combination of experimental approaches together with phylo-genetic comparisons with the corresponding RNA sequences from a variety of other species. These structural derivations, as well as the high degree of structural conservation among different organisms, have been the subject of a number of detailed recent reviews (e.g. 1–4). The secondary structures are still not complete (particularly in regions where the primary sequence is most highly conserved), and there are still a few discrepancies (reviewed in refs. 5,6) between the different versions that have been proposed (2,4), but nevertheless the current models for both 16S and 23S RNA provide a reliable framework into which data concerning the tertiary and quaternary arrangement of these molecules can be incorporated.


Nitrogen Mustard Conformational Switch Secondary Structure Model Switch Structure Quaternary Arrangement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brimacombe, R., Maly, P. and Zwieb, C. (1983) Progr. Nucleic Acids Res. 28, 1–48.CrossRefGoogle Scholar
  2. 2.
    Maly, P. and Brimacombe, R. (1983) Nucleic Acids Res. 11, 7263–7286.CrossRefGoogle Scholar
  3. 3.
    Woese, C.R., Gutell, R., Gupta, R. and Noller, H.F. (1983) Microbiol. Rev. 47, 621–669.Google Scholar
  4. 4.
    Noller, H.F. (1984) Ann. Rev. Biochem. 53, 119–162.CrossRefGoogle Scholar
  5. 5.
    Brimacombe, R. and Stiege, W. (1985) Biochem. J. 229, 1–17.Google Scholar
  6. 6.
    Brimacombe, R., Atmadja, J., Kyriatsoulis, A. and Stiege, W. (1986) Texas Ribosome Conference, Springer-Verlag, in press.Google Scholar
  7. 7.
    Peattie, D.A. and Gilbert, W. (1980) Proc. Natl. Acad. Sci. USA 77, 4679–4682.CrossRefGoogle Scholar
  8. 8.
    Zwieb, C. and Brimacombe, R. (1980) Nucleic Acids Res. 8, 2397–2411.CrossRefGoogle Scholar
  9. 9.
    Glotz, C., Zwieb, C., Brimacombe, R., Edwards, K. and Kössel, H. (1981) Nucleic Acids Res. 9, 3287–3306.CrossRefGoogle Scholar
  10. 10.
    Stiege, W., Zwieb, C. and Brimacombe, R. (1982) Nucleic Acids Res. 10, 7211–7229.CrossRefGoogle Scholar
  11. 11.
    Stiege, W., Glotz, C. and Brimacombe, R. (1983) Nucleic Acids Res. 11, 1687–1706.CrossRefGoogle Scholar
  12. 12.
    Atmadja, J., Brimacombe, R., Blöcker, H. and Frank, R. (1985) submitted for publication.Google Scholar
  13. 13.
    Wollenzien, P., Hearst, J.E., Thammana, P. and Cantor, C.R. (1979) J. Mol. Biol. 135, 255–269.CrossRefGoogle Scholar
  14. 14.
    Turner, S., Thompson, J.F., Hearst, J.E. and Noller, H.F. (1982) Nucleic Acids Res. 10, 2839–2849.CrossRefGoogle Scholar
  15. 15.
    Thompson, J.F. and Hearst, J.E. (1983) Cell 32, 1355–1365.CrossRefGoogle Scholar
  16. 16.
    Expert-Bezancon, A., Milet, M. and Carbon, P. (1983) Eur. J. Biochem. 136, 267–274.CrossRefGoogle Scholar
  17. 17.
    Turner, S. and Noller, H.F. (1983) Biochemistry 22, 4159–4164.CrossRefGoogle Scholar
  18. 18.
    Boublik, M., Oostergetel, G.T., Wall, J.S., Hainfeld, J.F., Radermacher, M., Wagenknecht, T., Verschoor, A. and Frank, J. (1986) Texas Ribosome Conference, Springer-Verlag, in press.Google Scholar
  19. 19.
    Serdyuk, I.N., Agalarov, S.C., Sedelnikova, S.E., Spirin, A.S. and May, R.P. (1983) J. Mol. Biol. 169, 409–425.CrossRefGoogle Scholar
  20. 20.
    Vasiliev, V.D., Serdyuk, I.N., Gudkov, A.T. and Spirin, A.S. (1986) Texas Ribosome Conference, Springer-Verlag, in press.Google Scholar
  21. 21.
    Ehresmann, C. and Ofengand, J. (1984) Biochemistry 23, 438–445.CrossRefGoogle Scholar
  22. 22.
    Volckaert, G. and Fiers, W. (1977) Analyt. Biochem. 83, 228–239.CrossRefGoogle Scholar
  23. 23.
    Gornicki, P., Nurse, K., Hellmann, W., Boublik, M. and Ofengand, J. (1984) J. Biol. Chem. 259, 10493–10498.Google Scholar
  24. 24.
    Wittmann, H.G. (1983) Ann. Rev. Biochem. 52, 35–65.CrossRefGoogle Scholar
  25. 25.
    Thurlow, D.L., Ehresmann, C. and Ehresmann, B. (1983) Nucleic Acids Res. 11, 6787–6802.CrossRefGoogle Scholar
  26. 26.
    Zimmermann, R.A. (1980) in “Ribosomes” (Chambliss, G., Craven, G.R., Davies, J., Davis, K., Kahan, L. and Nomura, M., eds.) pp. 135–169, University Park Press, Baltimore.Google Scholar
  27. 27.
    Gregory, R.J., Zeller, M.L., Thurlow, D.L., Gourse, R.L., Stark, M.J.R., Dahlberg, A.E. and Zimmermann, R.A. (1984) J. Mol. Biol. 178, 287–302.CrossRefGoogle Scholar
  28. 28.
    Yuki, A. and Brimacombe, R. (1975) Eur. J. Biochem. 56, 23–34.CrossRefGoogle Scholar
  29. 29.
    Zwieb, C. and Brimacombe, R. (1979) Nucleic Acids Res. 6, 1775–1790.CrossRefGoogle Scholar
  30. 30.
    Maly, P., Rinke, J., Ulmer, E., Zwieb, C. and Brimacombe, R. (1980) Biochemistry 19, 4179–4188.CrossRefGoogle Scholar
  31. 31.
    Ulmer, E., Meinke, M., Ross, A., Fink, G. and Brimacombe, R. (1978) Mol. Gen. Genet. 160, 183–193.CrossRefGoogle Scholar
  32. 32.
    Rinke, J., Meinke, M., Brimacombe, R., Fink, G., Rommel, W. and Fasold, H. (1980) J. Mol. Biol. 137, 301–314.CrossRefGoogle Scholar
  33. 33.
    Wower, I., Wower, J., Meinke, M. and Brimacombe, R. (1981) Nucleic Acids Res. 9, 4285–4302.CrossRefGoogle Scholar
  34. 34.
    Wower, I. and Brimacombe, R. (1983) Nucleic Acids Res. 11, 1419–1437.CrossRefGoogle Scholar
  35. 35.
    Sköld, S.E. (1983) Nucleic Acids Res. 11, 4923–4932.CrossRefGoogle Scholar
  36. 36.
    Golinska, B., Millon, R., Backendorf, C., Olomucki, M., Ebel, J.P. and Ehresmann, B. (1981) Eur. J. Biochem. 115, 479–484.CrossRefGoogle Scholar
  37. 37.
    Ehresmann, B., Backendorf, C., Ehresmann, C., Millon, R. and Ebel, J.P. (1980) Eur. J. Biochem. 104, 255–262.CrossRefGoogle Scholar
  38. 38.
    Chiaruttini, C., Expert-Bezançon, A., Hayes, D. and Ehresmann, B. (1982) Nucleic Acids Res. 10, 7657–7676.CrossRefGoogle Scholar
  39. 39.
    Glotz, C. and Brimacombe, R. (1980) Nucleic Acids Res. 8, 2377–2395.CrossRefGoogle Scholar
  40. 40.
    Noller, H.F. and Lake, J.A. (1984) in “Membrane Structure and Function, Vol. 6” (Bittar, E.E., ed.) pp. 217-297, John Wiley and Sons.Google Scholar
  41. 41.
    Atmadja, J., Brimacombe, R. and Maden, B.E.H. (1984) Nucleic Acids Res. 12, 2649–2667.CrossRefGoogle Scholar
  42. 42.
    Pleij, C.W.A., Rietveld, K. and Bosch, L. (1985) Nucleic Acids Res. 13, 1717–1731.CrossRefGoogle Scholar
  43. 43.
    Ramakrishnan, V., Capel, M., Kjeldgaard, M., Engelmann, D.M. and Moore, P.B. (1984) J. Mol. Biol. 174, 265–284.CrossRefGoogle Scholar
  44. 44.
    Breitenreuter, G., Lotti, M., Stöffler-Meilicke, M. and Stöffler, G. (1984) Mol. Gen. Genet. 197, 189–195.CrossRefGoogle Scholar
  45. 45.
    Lake, J.A. (1983) Prog. Nucleic Acid Res. 30, 163–194CrossRefGoogle Scholar
  46. 46.
    Moore, P.B., Capel, M., Kjeldgaard, M. and Engelmann, D.M. (1986) Texas Ribosome Conference, Springer-Verlag, in press.Google Scholar
  47. 47.
    Czernilofsky, A.P., Kurland, C.G. and Stöffler, G. (1975) FEBS Lett. 58, 281–284.CrossRefGoogle Scholar
  48. 48.
    Thompson, J.F. and Hearst, J.E. (1983) Cell 33, 19–24.CrossRefGoogle Scholar
  49. 49.
    Brimacombe, R. (1984) Trends in Biochem. Sciences 9, 273–277.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Richard Brimacombe
    • 1
  1. 1.Abteilung WittmannMax-Planck-Institut für Molekulare GenetikBerlin-DahlemGermany

Personalised recommendations