Advertisement

Equilibria in Ribosomal RNA Secondary Structure

  • Rupert De Wachter
Part of the NATO ASI Series book series (NSSA, volume 110)

Abstract

Secondary structure models have been elaborated for each of the RNA constituents of the ribosome. Documentation on models for the larger ribo-somal RNAs, i.e. small subunit RNA (including eukaryotic 18 S rRNA, bacterial 16 S rRNA and their mitochondrial equivalents) and large subunit rRNA (eukaryotic 28 S rRNA, bacterial 23 S rRNA and mitochondrial equivalents) can be found in a review by Noller (1984). Some references to models for the small rRNAs i.e. 5 S rRNA, eukaryotic 5.8 S rRNA and chloroplast 4.5 S rRNA, can be found in a sequence compilation by Erdmann et al. (1985). These secondary structure models are constructed primarily by a comparative approach, i.e. by alignment of the available RNA primary structures in different species, and selection of a base pairing scheme applicable to all these sequences. Further evidence for a postulated model is collected by a search for compensating substitutions (Woese et al., 1983) i.e. evolutionary changes in one strand of a postulated helix compensated by a concomitant change in the opposite strand which preserves base pairing. Experimental approaches are usually employed in a subsequent stage, in attempts to verify or falsify proposed models or to make a choice among alternative possibilities.

Keywords

Secondary Structure Internal Loop Small Subunit rRNA Secondary Structure Model Large Subunit rRNA 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atmadja, J., Brimacombe, R., and Maden, B.E.H., 1984, Xenopus laevis 18 S ribosomal RNA: experimental determination of secondary structural elements, and location of methyl groups in the secondary structure model, Nucl. Acids Res., 12:2649.CrossRefGoogle Scholar
  2. Aubert, M., Scott, J.F., Reynier, M., and Monier, R., 1968, Rearrangement of the conformation of Escherichia coli 5 S RNA, Proc. Natl. Acad. Sci. USA, 61:292.CrossRefGoogle Scholar
  3. Böhm, S., Fabian, H., and Welfle, H., 1982, Universal structural features of prokaryotic and eukaryotic ribosomal 5 S RNA derived from comparative analysis of their sequences, Acta Biol. Med. Germ., 41:1.Google Scholar
  4. Chen, M.W., Anne, J., Volcaert, G., Huysmans, E., Vandenberghe, A., and De Wachter, R., 1984, The nucleotide sequences of the 5 S rRNAs of seven molds and a yeast and their use in studying ascomycete phylogeny, Nucl. Acids Res., 12:4881.CrossRefGoogle Scholar
  5. Christensen, A., Mathiesen, M., Peattie, D., and Garrett, R., 1985, Alternative conformers of 5 S ribosomal RNA and their biological relevance, Biochemistry, 24:2284.CrossRefGoogle Scholar
  6. Dams, E., Vandenberghe, A., and De Wachter, R., 1982, Nucleotide sequences of three poriferan 5 S ribosomal RNAs, Nucl. Acids Res., 10:5297.CrossRefGoogle Scholar
  7. Dams, E., Vandenberghe, A., and De Wachter, R., 1983a, Sequences of the 5 S rRNAs of Azotobacter vinelandii, Pseudomonas aeruginosa and Pseudomonas fluorescens with some notes on 5 S RNA secondary structure, Nucl. Acids Res., 11:1245.CrossRefGoogle Scholar
  8. Dams, E., Londei, P., Cammarano, P., Vandenberghe, A., and De Wachter, R., 1983b, Sequences of the 5 S rRNAs of the thermo-acidophilic archaebacterium Sulfolobus solfataricus (Caldariella acidophila) and the thermophilic eubacteria Bacillus acidocaldarius and Thermus aquaticus, Nucl. Acids Res., 11:4667.CrossRefGoogle Scholar
  9. Delihas, N., and Andersen, J., 1982, Generalized structures of the 5 S ribosomal RNAs, Nucl. Acids Res., 10:7323.CrossRefGoogle Scholar
  10. De Wachter, R., Chen, M.W., and Vandenberghe, A., 1982, Conservation of secondary structure in 5 S ribosomal RNA: a uniform model for eukaryotic, eubacterial, archaebacterial and organelle sequences is energetically favourable, Biochemie, 64:311.CrossRefGoogle Scholar
  11. De Wachter, R., Chen, M.W., and Vandenberghe, A., 1984, Equilibria in 5 S ribosomal RNA secondary structure. Bulges and interior loops in 5 S RNA secondary structure may serve as articulations for a flexible molecule, Eur. J. Biochem., 143:175.CrossRefGoogle Scholar
  12. Erdmann, V.A., Wolters, J., Huysmans, E., and De Wachter, R., 1985, Collection of published 5 S, 5.8 S and 4.5 S ribosomal RNA sequences, Nucl. Acids Res., 13:r105.Google Scholar
  13. Fang, B.L., De Baere, R., Vandenberghe, A., and De Wachter, R., 1982, Sequences of three molluscan 5 S ribosomal RNAs confirm the validity of a dynamic secondary structure model, Nucl. Acids Res., 10:4679.CrossRefGoogle Scholar
  14. Fox, G.E., and Woese, C.R., 1975a, The architecture of 5 S rRNA and its relation to function, J. Mol. Evol., 6:61.CrossRefGoogle Scholar
  15. Fox, G.E., and Woese, C.R., 1975b, 5 S RNA secondary structure, Nature, 256:505.CrossRefGoogle Scholar
  16. Huysmans, E., Dams, E., Vandenberghe, A., and De Wachter, R., 1983, The nucleotide sequences of the 5 S rRNAs of four mushrooms and their use in studying the phylogenetic position of basidiomycetes among the eukaryotes, Nucl. Acids Res., 11:2871.CrossRefGoogle Scholar
  17. Luehrsen, K.R., and Fox, G.E., 1981, Secondary structure of eukaryotic cytoplasmic 5 S ribosomal RNA, Proc. Natl. Acad. Sci. USA, 78:2150.CrossRefGoogle Scholar
  18. MacKay, R.M., Spencer, D.F., Schnare, M.F., Doolittle, W.F., and Gray, M.W., 1982, Comparative sequence analysis as an approach to evaluating structure, function, and evolution of 5 S and 5.8 S ribosomal RNAs, Can. J. Biochem., 60:480.Google Scholar
  19. Nelles, L., Fang, B.L., Volckaert, G., Vandenberghe, A., and De Wachter, R., 1984, Nucleotide sequence of a crustacean 18 S ribosomal RNA gene and secondary structure of eukaryotic small subunit ribosomal RNAs, Nucl. Acids Res., 12:8749.CrossRefGoogle Scholar
  20. Ninio, J., 1979, Prediction of pairing schemes in RNA molecules. Loop contributions and energy of wobble and non-wobble pairs, Biochimie, 61:1133.CrossRefGoogle Scholar
  21. Nishikawa, K., and Takemura, S., 1974, Structure and function of 5 S ribosomal ribonucleic acid from Torulopsis utilis. II. Partial digestion with ribonucleases and derivation of the complete sequence, J. Biochem., 76:935.Google Scholar
  22. Nishikawa, K., and Takemura, S., 1978, Structure and function of 5 S ribosomal ribonucleic acid from Torulopsis utilis. IV. Detection of exposed guamine residues by chemical modification with kethoxel, J. Biochem., 84:259.Google Scholar
  23. Noller, H.F., 1984, Structure of ribosomal RNA, Ann. Rev. Biochem., 53:119.CrossRefGoogle Scholar
  24. Ohlsen, G.J., McCarroll, R., and Sogin, M.L., 1983, Secondary structure of the Dictyostelium discoideum small subunit ribosomal RNA, Nucl. Acids Res., 11:8037.CrossRefGoogle Scholar
  25. Rabin, D., Kas, T.-H., and Crothers, D.M., 1983,A characterization of the low temperature structural transition of Escherichia coli 5 S RNA by enzymatic digestion, J. Biol. Chem., 258:10813.Google Scholar
  26. Schwartz, R.M., and Dayhoff, M.D., 1978, Ribosomal and other RNAs, in: “Atlas of protein sequence and structure,” M.O. Dayhoff, ed., National Biomedical Research Foundation, Washington.Google Scholar
  27. Stahl, D.A., Luehrsen, K.R., Woese, C.R., and Pace, N.R., 1981, An unusual 5 S rRNA from Sulfolobus acidocaldarius, and its implication for a general 5 S rRNA structure, Nucl. Acids Res., 9:6129.CrossRefGoogle Scholar
  28. Studnicka, G.M., Eiserling, F.A., and Lake, J.A., 1981, A unique secondary folding pattern for 5 S RNA corresponds to the lowest energy homologous secondary structure in 17 different prokaryotes, Nucl. Acids Res., 2:1885.CrossRefGoogle Scholar
  29. Thompson, J.F., Wegnez, M.R., and Hearst, J.E., 1981, Determination of the secondary structure of Drosophila melanogaster 5 S RNA by hydroxymethyltrimethylpsoralen crosslinking, J. Mol. Biol., 147:417.CrossRefGoogle Scholar
  30. Toots, I., Misselwitz, R., Böhm, S., Welfle, H., Villems, R., and Saarma, M., 1982, Two distinct conformations of rat liver ribosomal 5 S RNA, Nucl. Acids Res., 10:3381.CrossRefGoogle Scholar
  31. Topai, M.D., and Fresco, J.R., 1976, Complementary base pairing and the origin of substitution mutations, Nature, 263:285.CrossRefGoogle Scholar
  32. Traub, W., and Sussmann, J.L., 1982, Adenine-guanine base pairing in ribosomal RNA, Nucl. Acids Res., 10:2701.CrossRefGoogle Scholar
  33. Trifonov, E.N., and Bolshoi, G., 1983, Open and closed 5 S ribosomal RNA, the only two universal structures encoded in the nucleotide sequences, J. Mol. Biol., 169:1.CrossRefGoogle Scholar
  34. Vandenberghe, A., Chen, M.W., Dams, E., De Baere, R., De Roeck, E., Huysmans, E., and De Wachter, R., 1984, The corrected nucleotide sequences of 5 S rRNAs from six angiosperms. With some notes on 5 S RNA secondary structure and molecular evolution, FEBS lett., 171:17.CrossRefGoogle Scholar
  35. Vandenberghe, A., Wassink, A., Raeymaekers, P., De Baere, R., Huysmans, E., and De Wachter, R., 1985, Nucleotide sequence, secondary structure and evolution of the 5 S ribosomal RNA from five bacterial species, Eur. J. Biochem., 149:537.CrossRefGoogle Scholar
  36. Walker, W.F., 1985, 5 S ribosomal RNA sequences from ascomycetes and evolutionary implications, System. Appl. Microbiol., 6:48.CrossRefGoogle Scholar
  37. Weidner, H., Yuan, R., and Crothers, D.M., 1977, Does 5 S RNA function by a switch between two secondary structures?, Nature, 266:193.CrossRefGoogle Scholar
  38. Willekens, P., Huysmans, E., Vandenberghe, A., and De Wachter, R., 1985, Archaebacterial 5 S ribosomal RNAs: nucleotide sequence in two methanogen species, secondary structure models, and evolution, Syst. Appl. Microbiol., in press.Google Scholar
  39. Woese, C.R., Gutell, R., Gupta, R., and Noller, H.F., 1983, Detailed analysis of the higher-order structure of 16 S-like ribosomal ribonucleic acids, Microbiol. Rev., 47:621.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Rupert De Wachter
    • 1
  1. 1.Departement BiochemieUniversiteit Antwerpen (UIA)AntwerpenBelgium

Personalised recommendations