Advertisement

Studies on 15N Labelled 5S RNA: Assignments in the Helix V Region of 5S RNA, and in the 5S/L25 Complex

  • M. Jarema
  • P. B. Moore
Part of the NATO ASI Series book series (NSSA, volume 110)

Abstract

The discovery that RNAs possess catalytic capabilities (Kruger et al, 1982; Guerrier-Takada et al, 1983), and the growing realization of the importance of ribosomal RNAs in ribosome function (for review see Noller, 1984) have stimulated renewed interest in the structural and chemical properties of RNA. Of the ribosomal RNAs only one is simple enough and small enough to lend itself to detailed physical characterization in solution, 5S RNA.

Keywords

Imino Proton Chemical Shift Correlation Imine Proton Helix Versus Imino Resonance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, E.H., 1946, Growth requirements of virus-resistant mutants of Escher ich ia coli strain B, Proc. Nat. Acad. Sci. USA, 32:120.CrossRefGoogle Scholar
  2. Brosius, J., Dull, T.J., Sleeter, D.D., and Noller, H.F., 1981, Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli, J. Mol. Biol., 148:107.CrossRefGoogle Scholar
  3. Delihas, N., Anderson, S., and Singhal, R.P., 1984, Structure, function and evolution of 5S ribosomal RNAs, Prog. Nucl. Acid Res. Mol. Biol., 31:161.CrossRefGoogle Scholar
  4. Erdmann, V.A., Wolter, J.H., Haysmans, E., Vandenberghe, A., and DeWachter, R., 1984, Collection of published 5S and 5.8S RNA sequences, Vol. 12 supplement Nuc. Acids Res. r133.Google Scholar
  5. Garrett, R.A., Vester, B., Leffers, H., Sorensen, P.M., Kjems, J., Olesen, S.O., Christensen, A., Christensen, J., and Douthwaite, S., 1984, Mechanisms of protein-RNA recognition and assembly in ribosomes, in: “Gene Expression,” Alfred Benzon Symp. 19, Clark, B.F.c. and Petersen, H.V., eds., Muriksgard, Copenhagen, p. 331.Google Scholar
  6. Gonnella, N.C., Birdseye, T.R., Nee, M., and Roberts, 3.D., 1982, 15N NMR study of a mixture of uniformly labelled tRNAs, Proc. Nat. Acad. Sci. USA, 79:4834.CrossRefGoogle Scholar
  7. Griffey, R.H., Redfield, A.G., Loomis, R.E., and Dahlquist, F.W., 1985, Nuclear magnetic resonance observation and dynamics of specific amide protons in T4 lysozyme, Biochemistry, 24:817.CrossRefGoogle Scholar
  8. Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N., and Altman, S., 1983, The RNA moiety of ribonuclease P in the catalytic subunit of the enzyme, Cell, 35:849.CrossRefGoogle Scholar
  9. Huber, P.W. and Wool, I.G., 1984, Nuclease protection analysis of ribonucleoprotein complexes: Use of the cytotoxic ribonuclease alpha-sarcin to determine the binding sites for Escherichia coli ribosomal proteins L5, L18 and L25 on 5S rRNA, Proc. Nat. Acad. Sci. USA, 81:322.CrossRefGoogle Scholar
  10. Kime, M.J., 1984a, Assignment of resonances in the Escherichia coli 5S RNA fragment proton NMR spectrum using uniform nitrogen-15 enrichment, FEBS Letters, 173:342.CrossRefGoogle Scholar
  11. Kime, M.J., 1984b, Assignment of resonances of exchangeable protons in the NMR spectrum of the complex formed by Escherich ia coli ribosomal protein L25 and uniformly nitrogen-15 enriched 5S RNA fragment, FEBS Letters, 175:259.CrossRefGoogle Scholar
  12. Kime, M.J., Gewirth, D.T., and Moore, P,.B., 1984, Assignment of resonances in the downfield proton spectrum of Escherichia coli 5S RNA and its nucleoprotein complexes using components of a ribonuclease-resistant fragment, Biochemistry, 23:3559.CrossRefGoogle Scholar
  13. Kime, M.J. and Moore, P.B., 1983a, Nuclear Overhauser experiments at 500 MHz on the downfield proton spectrum of a RNase-resistant fragment of 5S RNA, Biochemistry, 22:2615.CrossRefGoogle Scholar
  14. Kime, M.J. and Moore, P.B., 1983b, Nuclear Overhauser experiments at 500 MHz on the downfield proton spectra of 5S ribonucleic acid and its complex with ribosomal protein L25, Biochemistry, 22:2622.CrossRefGoogle Scholar
  15. Kime, M.J. and Moore, P.B., 1983c, Physical evidence for a domain structure in E. coli 5S RNA, FEBS Letters, 153:199.CrossRefGoogle Scholar
  16. Kime, M.J., Ratcliffe, R.G., Moore, P.B., and Williams, R.J.P., 1981, A proton NMR study of ribosomal protein L25 from Escherichia coli, Eur. J. Biochem., 116:269.CrossRefGoogle Scholar
  17. Kruger, K., Grabowski, P.J., Zaug, A.J., Sands, J., Gottschling, E. and Cech, T.R., 1982, Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena, Cell, 31:147.CrossRefGoogle Scholar
  18. Maniatis, T., Fritsch, E.F., and Sambrook, J., 1982, “Molecular Cloning, A Laboratory Manual,” Cold Spring Harbor Laboratory.Google Scholar
  19. Monier, R., 1974, 5S RNA in ribosomes, in: “Ribosomes,” Nomura, M., Tissieres, A., and Lengyel, P., eds., Cold Spring Harbor Laboratory, pp. 141-168.Google Scholar
  20. Noller, H.F., 1984, Structure of ribosomal RNA, Ann. Rev. Biochem., 53:119.CrossRefGoogle Scholar
  21. Rohl, R. and Nierhaus, K., 1982, Assembly map of the large subunit (50S) of Escherichia coli ribosomes, Proc. Nat. Acad. Sci. USA, 79:729.CrossRefGoogle Scholar
  22. Stoffler, G. and Stoffler-Meilicke, M., 1984, Immunoelectron microscopy of ribosomes, Ann. Rev. Biophys. and Bioengin., 13:303.CrossRefGoogle Scholar
  23. Wittmann, H.G., 1982, Components of bacterial ribosomes, Ann. Rev. Biochem., 51:155.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • M. Jarema
    • 1
  • P. B. Moore
    • 2
  1. 1.Biochemistry DepartmentBrandeis UniversityWalthamUSA
  2. 2.Department of ChemistryYale UniversityNew HavenUSA

Personalised recommendations