Anticodon-Anticodon Interactions and tRNA Sequence Comparison: Approaches to Codon Recognition

  • H. Grosjean
  • C. Houssier
  • R. Cedergren
Part of the NATO ASI Series book series (NSSA, volume 110)


The intricate series of events which produce protein from nucleic acid structural information is called translation. The simplicity of this term largely misrepresents the complexity of the underlying processes which involve precise interactions between many proteins and nucleic acids. Although the importance of the interplay of each component of the system is not well known, it is generally recognized that two molecules play a key role: transfer RNA and its trinucleotide anticodon which recognizes a trinucleotide codon in messenger RNA. There is now ample evidence that the efficiency and accuracy of this system depend on the RNA-RNA and RNA-protein interactions (for a review see ref. 1 and 2). Given the complexity of the ribosomal context in which RNA is decoded we are forced to implement simpler experimental models from which information, hopefully related to the biological system, can be obtained. We present here the tack which has been taken and some critical results which lead to important structural correlations dealing with translation and its control.


Dissociation Rate Constant tRNA Molecule Anticodon Loop Family Codon Triplet Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.H. Buckingham and H. Grosjean, in: “Accuracy in Molecular Processes”, D.J. Galas, T.B. Kirkwood and R. Rosenberg, ed., Chapman and Hall, London, in press (1985).Google Scholar
  2. 2.
    C.G. Kurland and M. Ehrenberg, Progr. Nucl. Ac. Res. Mol. Biol. 31: 192–217 (1984).Google Scholar
  3. 3.
    F.H.C. Crick, S. Brenner, A. Klug and G. Piecznik, Origins of Life, 7: 389–397 (1976).CrossRefGoogle Scholar
  4. 4.
    M. Eigen and P. Schuster, in: “The Hypercycle”, Springer-Verlag, Berlin (1979).CrossRefGoogle Scholar
  5. 5.
    K. Kruger, P.J. Grabowski, A.J. Zaug, J. Sands, D.E. Gottschling and T.R. Cech, Cell 31: 147–157 (1982).CrossRefGoogle Scholar
  6. 6.
    C. Guerrier-Takada, K. Gardiner, T. Marsh, N. Pace and S. Altman, Cell 35: 849–857 (1983).CrossRefGoogle Scholar
  7. 7.
    C.R. Woese, in: “Ribosomes: Structure, Ponction and Genetics”, G. Chambliss, G.R. Craven, J. Davies, K. Davis, L. Kahan and M. Nomura, eds, University Park Press, Baltimore, p. 357–373 (1979).Google Scholar
  8. 8.
    J. Eisinger, Biochem. Biophys. Res. Commun. 43: 854–861 (1971).CrossRefGoogle Scholar
  9. 9.
    J. Eisinger and N. Gross, J. Mol. Biol. 80: 165–174 (1974).CrossRefGoogle Scholar
  10. 10.
    H. Grosjean, D.G. Söll and D.M. Crothers, J. Mol. Biol. 103: 499–519 (1976).CrossRefGoogle Scholar
  11. 11.
    H. Grosjean and H. Chantrenne, in: “Molecular Biology, Biochemistry and Biophysics”, F. Chapeville and A. Haenni, eds, Springer-Verlag, Berlin (1980).Google Scholar
  12. 12.
    J. Eisinger, B. Feuer and T. Yamane, Nature 231: 126–128 (1971).CrossRefGoogle Scholar
  13. 13.
    D. Labuda, G. Striker and D. Pörschke, J. Mol. Biol. 174: 587–604 (1984).CrossRefGoogle Scholar
  14. 14.
    S.R. Jaskunas, C.R. Cantor and I. Tinoco, Jr., Biochemistry 7: 3164–3178 (1968).CrossRefGoogle Scholar
  15. 15.
    D.G. Gorenstein and E.M. Goldfield, Biochemistry 21: 5839–5849 (1982).CrossRefGoogle Scholar
  16. 16.
    E. Westhof, P. Dumas and D. Moras, J. Biomol. Struct. Dyn. 1: 337–344 (1983).Google Scholar
  17. 17a.
    R. Rigler and W. Wintermeyer, Ann. Rev. Biophys. Bioeng. 12: 475–505 (1983).CrossRefGoogle Scholar
  18. 17b.
    C.W. Hilbers, A. Heerschap, C.A.G. Haasnoot and J.A.L.I. Walters, J. Biomol. Struct. Dyn. 1: 183–207 (1983).Google Scholar
  19. 18.
    H. Grosjean, S. de Henau and D.M. Crothers, Proc. Natl. Acad. Sci. USA 75: 610–614 (1978).CrossRefGoogle Scholar
  20. 19.
    D. Pörschke, O.C. Uhlenbeck and P.A. Martin, Biopolymers 12: 1313–1335 (1973).CrossRefGoogle Scholar
  21. 20.
    J. Weissenbach and H. Grosjean, Eur. J. Biochem., 116: 207–213 (1981).CrossRefGoogle Scholar
  22. 21.
    D. Labuda, H. Grosjean, G. Striker and D. Pörschke, Biochim. Biophys. Acta 698: 230–236 (1982).Google Scholar
  23. 22.
    D. Labuda and H. Grosjean, Biochimie 63: 77–81 (1981).CrossRefGoogle Scholar
  24. 23.
    J. Vacher, H. Grosjean, C. Houssier and R.H. Buckingham, J. Mol. Biol. 177: 329–342. (1984).CrossRefGoogle Scholar
  25. 24.
    P. Romby, R. Giégé, C. Houssier and H. Grosjean, J. Mol. Biol. 183: in press (1985).Google Scholar
  26. 25.
    C. Houssier and H. Grosjean, J. Biomol. Struct. Dyn. 4: in press (1985).Google Scholar
  27. 26.
    S.M. Freier, D.D. Albergo and D.H. Turner, Biopolymers 22: 1107–1131 (1983).CrossRefGoogle Scholar
  28. 27.
    D. Labuda and D. Pörschke, Biochemistry 21: 49–53 (1982).CrossRefGoogle Scholar
  29. 28.
    B.D. Wells, Nucleic Acids Res. 12: 2157–2170 (1984).CrossRefGoogle Scholar
  30. 29.
    N. Tibanyenda, S.H. De Bruin, C.A.G. Haasnoot, G.A. Van der Marel, J.H. Van Boom and C.W. Hilbers, Eur. J. Biochem. 139: 19–27 (1984).CrossRefGoogle Scholar
  31. 30a.
    G.M. Clore, A.M. Gronenborn and L.W. McLaughlin, J. Mol. Biol. 174: 163–173 (1984).CrossRefGoogle Scholar
  32. 30b.
    G.M. Clore, A.M. Gronenborn, E.A. Piper, L.W. McLaughlin, E. Graeser and J.H. Van Boom, Biochem. J. 221: 737–751 (1984).Google Scholar
  33. 31.
    R. Cedergren, D. Sankoff, B. Larue and H. Grosjean, C.R.C. Critical Reviews in Biochemistry 11: 35–104 (1981).CrossRefGoogle Scholar
  34. 32.
    H. Grosjean, R. Cedergren and W. McKay, Biochimie 64: 387–397 (1982).CrossRefGoogle Scholar
  35. 33.
    B. Larue, R. Cedergren, D. Sankoff and H. Grosjean, J. Mol. Evol. 14: 287–300 (1979).CrossRefGoogle Scholar
  36. 34.
    M. Yarus, Science 218: 646–652 (1982).CrossRefGoogle Scholar
  37. 35a.
    S. Nishimura, in: “tRNA: Structure, Properties and Recognition” P.R. Schimmel, D. Söll and J.A. Abelson, eds, Cold Spring Harbor Laboratory USA, Monograph 9A: 59–79 (1979).Google Scholar
  38. 35b.
    T.H. Tsang, M. Buck and B.N. Ames, Biochim. Biophys. Acta 741: 180–196 (1983).Google Scholar
  39. 36.
    G. Dirheimer, in: “Recent Results in Cancer Research”, Springer-Verlag, Berlin 84: 15–46 (1983).Google Scholar
  40. 37.
    H.A.M. Geerdes, J.H. Van Boom and C.W. Hilbers, J. Mol. Biol. 142: 219–230 (1980).CrossRefGoogle Scholar
  41. 38.
    H. Grosjean, K. Nicoghosian, E. Haumont, D. Soil and R. Cedergren, Nucleic Acids Res. 13: in press (1985).Google Scholar
  42. 39.
    M. Buck and E. Griffiths, Nucleic Acids Res. 10: 2609–2624 (1982).CrossRefGoogle Scholar
  43. 40.
    M. Buck and B.N. Ames, Cell 36: 523–531 (1984).CrossRefGoogle Scholar
  44. 41.
    S.P. Eisenberg, L. Soll and M. Yarus, J. Mol. Biol. 135: 111–126 (1979).CrossRefGoogle Scholar
  45. 42.
    W. Fuller and A. Hodgson, Nature 215: 817–821 (1967).CrossRefGoogle Scholar
  46. 43.
    E. Egert, H.J. Lindner, W. Hillen and M.C. Bohm, J. Am. Chenu Soc. 102: 3707–3713 (1980).CrossRefGoogle Scholar
  47. 44.
    N. Yokoyama, Y. Yamamoto, T. Miyazawa, K. Watanabe, S. Higuchi, Z. Yamaizumi and S. Nishimura, Nucleic Acids Res., Symp. Ser. 10: 155–156 (1981).Google Scholar
  48. 45.
    D. Moras, M.B. Comarmond, J. Fisher, R. Weiss, J.C. Thierry, J.P. Ebel and R. Giégé, Nature 288: 669–674 (1980).CrossRefGoogle Scholar
  49. 46.
    G.B. Weiss, J. Mol. Evol. 2: 199–204 (1973).CrossRefGoogle Scholar
  50. 47.
    H. Grosjean, D. Sankoff, M.J. Jou, W. Fiers and R. Cedergren, J.Mol. Evol. 12: 113–119 (1978).CrossRefGoogle Scholar
  51. 48.
    H. Grosjean and W. Fiers, Gene 18: 199–209 (1982).CrossRefGoogle Scholar
  52. 49.
    A.J. Zaug, P.J. Grabowski and T.R. Cech, Nature 301: 578–583 (1983).CrossRefGoogle Scholar
  53. 50.
    U. Lagerkvist, American Scientist 68: 192–198 (1980).Google Scholar
  54. 51.
    G.R. Björk, J. Ericson, Th. Hagervall, Y. Jönsson; reported at the 11th Internat. tRNA workshop-Banz-Germany, abstract DII-6, May 1985Google Scholar
  55. 52.
    M. Faxen, L.A. Kirsebom, E. Palmcrantz and L. A. Isaksson, 11th Internat. tRNA workshop-Banz-Germany, abstract DII-12, May 1985.Google Scholar
  56. 53.
    M. Sprinzl, J. Moll, F. Meissner and T. Hartmann, Nucleic Acids Res., r1-r49 and r51-r104 (1985).Google Scholar
  57. 54.
    G.R. Björk, in: “Processing of RNA”, D. Apirion Ed., CRC Press, Inc., Boca, Raton, Florida, pp 291–330 (1984).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • H. Grosjean
    • 1
  • C. Houssier
    • 2
  • R. Cedergren
    • 3
  1. 1.Laboratoire de Chimie BiologiqueUniversité Libre de BruxellesRhode St-GenèseBelgique
  2. 2.Laboratoire de Chimie PhysiqueUniversité de Liège Sart-TilmanLiègeBelgique
  3. 3.Département de BiochimieUniversité de MontréalMontréalCanada

Personalised recommendations