Improved Parameters for Prediction of RNA Secondary Structure and Insights into why RNA forms Double Helixes

  • D. H. Turner
  • S. M. Freier
  • N. Sugimoto
  • D. R. Hickey
  • J. A. Jaeger
  • A. Sinclair
  • D. Alkema
  • T. Neilson
  • M. H. Caruthers
  • R. Kierzek
Part of the NATO ASI Series book series (NSSA, volume 110)


Thermodynamic parameters for double helix formation have been measured for a large number of oligoribonucleotides. These data have been analyzed to provide free energy changes associated with base pairs, dangling ends, and base mismatches. The results suggest base stacking and base pairing are important determinants of RNA stability, but that hydrophobic bonding is not. The improved thermodynamic parameters are applied to predict secondary structures for the self splicing intervening sequence from the ribosomal RNA precursor of Tetrahymena thermophila.


Free Energy Change Double Helix Helix Formation Neighbor Model Helix Stability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albergo, D. D., and Turner, D. H., 1981, Biochemistry, 20:1413.CrossRefGoogle Scholar
  2. Back, J. F., Oakenful, D., and Smith, M. B., 1979, Biochemistry, 18:5191.CrossRefGoogle Scholar
  3. Beckett, D. and Uhlenbeck, O. C., 1984, Enzymatic Synthesis of Oligoribonucleotides, in: “Oligonucleotide Synthesis: A Practical Approach,” M. J. Gait, ed., IRL Press, Oxford, pp. 185–197.Google Scholar
  4. Borer, P. N., Dengler, B., Tinoco, I., Jr., and Uhlenbeck, O. C., 1974, J. Mol. Biol., 86:843.CrossRefGoogle Scholar
  5. Brandts, J. F. and Hunt, L., 1967, J. Am. Chem. Soc., 89:4826.CrossRefGoogle Scholar
  6. Cantor, C. R. and Schimmel, P. R., 1980, “Biophysical Chemistry Part I: The Conformation of Biological Macromolecules,” W. H. Freeman, San Francisco, California.Google Scholar
  7. Cech, T. R., Tanner, N. K., Tinoco, I., Weir, B. R., Zuker, M., and Perlman, P. S., 1983, Proc. Natl. Acad. Sci. U.S.A., 80:3903.CrossRefGoogle Scholar
  8. Dewey, T. G. and Turner, D. H., 1980, Biochemistry, 19:1681.CrossRefGoogle Scholar
  9. England, T. E. and Neilson, T., 1976, Can. J. Chem., 54:1714.CrossRefGoogle Scholar
  10. Freier, S. M., Hill, K. O., Dewey, T. G., Marky, L. A., Breslauer, K. J., and Turner, D. H., 1981, Biochemistry, 20:1419.CrossRefGoogle Scholar
  11. Freier, S. M., Burger, B. J., Alkema, D., Neilson, T., and Turner, D. H., 1983a, Biochemistry, 22:6198.CrossRefGoogle Scholar
  12. Freier, S. M., Albergo, D. D., and Turner, D. H., 1983, Biochemistry, 22:1107.CrossRefGoogle Scholar
  13. Freier, S. M., Alkema, D., Sinclair, A., Neilson, T., and Turner, D. H., 1985a, Biochemistry, 24:4533.CrossRefGoogle Scholar
  14. Freier, S. M., Sinclair, A., Neilson, T., and Turner, D. H., 1985b, J. Mol. Biol., 184:in press.Google Scholar
  15. Freier, S. M., Sinclair, A., Alkema, D., Neilson, T., Kierzek, R., Caruthers, M. H., and Turner, D. H., 1986a, in preparation.Google Scholar
  16. Freier, S. M., Turner, D. H., Caruthers, M. H., and Kierzek, R., 1986b, in preparation.Google Scholar
  17. Freier, S. M., Sugimoto, N., Jaeger, J. A., Neilson, T., Kierzek, R., Caruthers, M. H., and Turner, D. H., 1986c, in preparation.Google Scholar
  18. Freier, S. M., Neilson, T., Kierzek, R., Caruthers, M. H., and Turner, D. H., 1986d, in preparation.Google Scholar
  19. Geiger, A., Rahman, A., and Stillinger, F. H., 1979, J. Chem. Phys., 70:263.CrossRefGoogle Scholar
  20. Gekko, K. and Timasheff, S. N., 1981a, Biochemistry, 20:4667.CrossRefGoogle Scholar
  21. Gekko, K. and Timasheff, S. N., 1981b, Biochemistry, 20:4677.CrossRefGoogle Scholar
  22. Gerlsma, S. Y. and Stuur, E. R., 1974, Int. J. Pept. Protein Res., 6:65.CrossRefGoogle Scholar
  23. Gralla, J. and Crothers, D. M., 1973, J. Mol. Biol., 73:497.CrossRefGoogle Scholar
  24. Hickey, D. R. and Turner, D. H., 1985a, Biochemistry, 24:2086.CrossRefGoogle Scholar
  25. Hickey, D. R. and Turner, D. H., 1985b, Biochemistry, 24:3987.CrossRefGoogle Scholar
  26. Inoue, T. and Cech, T. R., 1985, Proc. Natl. Acad. Sci., U.S.A., 82:648.CrossRefGoogle Scholar
  27. Jacobson, A. B., Good, L., Simonetti, J., and Zuker, M., 1984, Nucleic Acids Res., 12:45.CrossRefGoogle Scholar
  28. Kauzmann, W., 1959, Adv. Protein Chem., 14:1.CrossRefGoogle Scholar
  29. Kierzek, R., Freier, S. M., Swinton, D., Turner, D. H., and Caruthers, M. H., 1986, in preparation.Google Scholar
  30. Langlet, J., Giessner-Prettre, C., Pullman, B., Claverie, P., and Piazolla, D., 1980, Int. J. Quantum Chem., 18:421.CrossRefGoogle Scholar
  31. Linse, P., Karlström, G., and Jönsson, B., 1984, J. Am. Chem. Soc., 106:4096.CrossRefGoogle Scholar
  32. Nelson, J. W., Martin, F. H., and Tinoco, I., Jr., 1981, Biopolymers, 20:2509.CrossRefGoogle Scholar
  33. Nussinov, R., Tinoco, I., Jr., and Jacobson, A. B., 1982, Nucleic Acids Res., 10:341.CrossRefGoogle Scholar
  34. Okamoto, B. Y., Wood, R. H., and Thompson, P. T., 1978, J. Chem. Soc., Faraday Trans. 1, 74:1990.CrossRefGoogle Scholar
  35. Pangali, C., Rao, M., and Berne, B. J., 1979, J. Chem. Phys., 71:2982.CrossRefGoogle Scholar
  36. Papanicolaou, C., Gouy, M., and Ninio, J., 1984, Nucleic Acids Res., 12:31.CrossRefGoogle Scholar
  37. Parodi, R. M., Bianchi, E., and Ciferri, A., 1973, J. Biol. Chem., 248:4047.Google Scholar
  38. Petersheim, M. and Turner, D. H., 1983a, Biochemistry, 22:256.CrossRefGoogle Scholar
  39. Petersheim, M. and Turner, D. H., 1983b, Biochemistry, 22:269.CrossRefGoogle Scholar
  40. Pipas, J. M. and McMahon, J. E., 1975, Proc. Natl. Acad. Sci., U.S.A., 72:2017.CrossRefGoogle Scholar
  41. Pullman, A. and Pullman, B., 1968, Adv. Quantum Chem., 4:267.CrossRefGoogle Scholar
  42. Pullman, B. and Pullman, A., 1969, Prog. Nucleic Acid Res. Mol. Biol. 9:327–402.CrossRefGoogle Scholar
  43. Romaniuk, P. J. and Uhlenbeck, O. C., 1983, Methods Enzymol., 100:52.CrossRefGoogle Scholar
  44. Salser, W., 1977, Cold Spring Harbor Symp. Quant. Biol., 42:985.CrossRefGoogle Scholar
  45. Schrier, E. E., Ingwall, R. T., and Scheraga, H. A., 1965, J. Phys. Chem., 69:298.CrossRefGoogle Scholar
  46. Schrier, E. E. and Scheraga, H. A., 1962, Biochem. Biophys. Acta, 64:406.CrossRefGoogle Scholar
  47. Swaminathan, S., Harrison, S. W., and Beveridge, D. L., 1978, J. Am. Chem. Soc., 100:5705.CrossRefGoogle Scholar
  48. Tinoco, I., Jr., Uhlenbeck, O. C., and Levine, M. D., 1971, Nature (London), 230:362.CrossRefGoogle Scholar
  49. Uhlenbeck, O. C., Baller, J., and Doty, P., 1970, Nature, 225:508.CrossRefGoogle Scholar
  50. Uhlenbeck, O. C., Martin, F. H., and Doty, P., 1971, J. Mol. Biol., 57:217.CrossRefGoogle Scholar
  51. Uhlenbeck, O. C. and Gumport, R. I., 1982, The Enzymes, 15:31.CrossRefGoogle Scholar
  52. Zuker, M. and Stiegler, P., 1981, Nucleic Acids Res., 9:133.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • D. H. Turner
    • 1
  • S. M. Freier
    • 1
  • N. Sugimoto
    • 1
  • D. R. Hickey
    • 1
  • J. A. Jaeger
    • 1
  • A. Sinclair
    • 2
  • D. Alkema
    • 2
  • T. Neilson
    • 2
  • M. H. Caruthers
    • 3
  • R. Kierzek
    • 4
  1. 1.Department of ChemistryUniversity of RochesterRochesterUSA
  2. 2.Department of BiochemistryMcMaster UniversityHamiltonCanada
  3. 3.Department of Chemistry and BiochemistryUniversity of ColoradoBoulderUSA
  4. 4.Institute of Bioorganic ChemistryPolish Academy of SciencesPoznanPoland

Personalised recommendations