Gene Transfer pp 243-261 | Cite as

Mutation of Autonomously Replicating Plasmids

  • Michele P. Calos


Transfection of mammalian cells with DNA vectors that can replicate autonomously as plasmids is advantageous for several types of experiments. Plasmids that replicate to high copy number provide amplification of signals for DNA, RNA, and protein synthesis. Also, plasmid DNA can be easily retrieved from mammalian cells, separate from the mass of chromosomal DNA. Thus, the use of autonomously replicating recombinant DNA vectors, in conjunction with transfection techniques for transfer of the vectors to mammalian cells, has produced rapid and powerful experiments that avoid many of the complexities associated with the full-sized mammalian genome.


Mutation Frequency Shuttle Vector Monkey Cell Mutant Plasmid High Mutation Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ashman, C. R., and Davidson, R. L., 1984, High spontaneous mutation frequency in shuttle vector sequences recovered from mammalian cellular DNA, Mol. Cell. Biol. 4: 2226–2272.Google Scholar
  2. Calos, M. P., Lebkowski, J. S., and Botchan, M. R., 1983, High mutation frequency in DNA transfected into mammalian cells, Proc. Natl. Acad. Sci. U.S.A. 82: 3015–3019.CrossRefGoogle Scholar
  3. Clancy, S., Mann, C., Davis, R. W., and Calos, M. P., 1984, Deletion of plasmid sequences during Saccharomyces cerevisiae transformation, J. Bacteriol. 159: 1065–1067.PubMedGoogle Scholar
  4. Coulondre, C., and Miller, J. H., 1977a, Genetic studies of the lac repressor. III. Additional correlation of mutational sites with specific amino acid residues, J. Mol. Biol. 117: 525–567.PubMedCrossRefGoogle Scholar
  5. Coulondre, C., and Miller, J. H., 1977b, Genetic studies of the lac repressor. IV. Mutagenic specificity in the lac gene of Escherichia coli, J. Mol. Biol. 117: 577–606.PubMedCrossRefGoogle Scholar
  6. DiMaio, D., Treisman, R., and Maniatis, T., 1982, Bovine papillomavirus vector that propagates as a plasmid in both mouse and bacterial cells, Proc. Natl. Acad. Sci. U.S.A. 79: 4030–4034.PubMedCrossRefGoogle Scholar
  7. Drake, J. W., and Baltz, R. H., 1976, The biochemistry of mutagenesis, Annu. Rev. Biochem. 45: 11–37.PubMedCrossRefGoogle Scholar
  8. DuBridge, R. B., Lusky, M., Botchan, M. R., and Calos, M. P., 1985, Amplification of a bovine papilloma virus—simian virus 40 chimaera, J. Virol. 56: 625–627.PubMedGoogle Scholar
  9. Folger, K. R., Wang, E. A., Wahl, G., and Capecchi, M. R., 1982, Patterns of integration of DNA microinjected into cultured mammalian cells: Evidence for homologous recombination between injected plasmid DNA molecules, Mol. Cell. Biol. 2: 1372–1387.PubMedGoogle Scholar
  10. Gluzman, Y., 1981, SV40-transformed simian cells support the replication of early SV40 mutants, Cell 23: 175–182.PubMedCrossRefGoogle Scholar
  11. Graham, F. L., Smiley, J., Russell, W. C., and Nairn, R., 1977, Characteristics of a human cell line transformed by DNA from human adenovirus type 5, J. Gen. Virol. 36: 59–72.PubMedCrossRefGoogle Scholar
  12. Hirt, B., 1967, Selective extraction of polyoma DNA from infected mouse cultures, J. Mol. Biol. 26: 365–369.PubMedCrossRefGoogle Scholar
  13. Kelly, T. J., and Nathans, D., 1977, The genome of simian virus 40, Adv. Virus Res. 21: 85–173.PubMedCrossRefGoogle Scholar
  14. Law, M.-F., Lowy, D. R., Dvoretzky, I., and Howley, P. M., 1981, Mouse cells transformed by bovine papillomavirus contain only extrachromosomal viral DNA sequences, Proc. Natl. Acad. Sci. U.S.A. 78: 2727–2731.PubMedCrossRefGoogle Scholar
  15. Lebkowski, J. S., DuBridge, R. B., Anteil, E. A., Greisen, K. S., and Calos, M. P., 1984, Transfected DNA is mutated in monkey, mouse and human cells, Mol. Cell. Biol. 4: 1951–1960.PubMedGoogle Scholar
  16. Lebkowski, J. S., Clancy, S., and Calos, M. P., 1985a, SV40 replication in adenovirus-transformed human cells antagonizes gene expression, Nature (London) 317: 169–171.CrossRefGoogle Scholar
  17. Lebkowski, J. S., Clancy, S., Miller, J. H., and Calos, M. P., 1985b, The lací shuttle: Rapid analysis of the mutagenic specificity of ultraviolet light in human cells, Proc. Natl. Acad. Sci. U.S.A. 82: 8606–8610.PubMedCrossRefGoogle Scholar
  18. Lebkowski, J. S., Miller, J. H., and Calos, M. P., 1986, DNA sequence changes induced in human cells by the alkylating agent ethyl methanesulfonate, Mol. Cell. Biol. 6: 1838–1842.PubMedGoogle Scholar
  19. Lewin, B., 1980, Gene Expression: Eukaryotic Chromosomes, Vol. 2, 2nd ed., Wiley, New York.Google Scholar
  20. Lusky, M., and Botchan, M. R., 1984, Characterization of the bovine papillomavirus plasmid maintenance sequences, Cell 36: 391–401.PubMedCrossRefGoogle Scholar
  21. Lusky, M., and Botchan, M. R., 1985, Genetic analysis of bovine papillomavirus type 1 transacting replication factors, J. Virol. 53: 955–965.PubMedGoogle Scholar
  22. Mangin, M., Ares, M., and Weiner, A. M., 1985, Ul small nuclear RNA genes are subject to dosage compensation in mouse cells, Science 229: 272–275.PubMedCrossRefGoogle Scholar
  23. Miller, C. K., and Temin, H. M., 1983, High-efficiency ligation and recombination of DNA fragments by vertebrate cells, Science 220: 606–609.PubMedCrossRefGoogle Scholar
  24. Miller, J. H., 1978, The lacl gene; Its role in lac operon control and its use as a genetic system, in: The Operon ( J. H. Miller and W. S. Reznikoff, eds.), pp. 31–88, Cold Spring Harbor Press, Cold Spring Harbor, New York.Google Scholar
  25. Miller, J. H., 1985, Mutagenic specificity of ultraviolet light, J. Mol. Biol. 182: 45–68.PubMedCrossRefGoogle Scholar
  26. Miller, J. H., Ganem, D., Lu, P., and Schmitz, A., 1977, Genetic studies of the lac repressor. I. Correlation of mutational sites with specific amino acid residues; construction of a collinear gene-protein map, J. Mol. Biol. 109: 275–301.PubMedCrossRefGoogle Scholar
  27. Miller, J. H., Lebkowski, J. S., Greisen, K. S., and Calos, M. P., 1984, Specificity of mutations induced in transfected DNA by mammalian cells, EMBO J. 13: 3117–3121.Google Scholar
  28. Mulligan, R. C., and Berg, P., 1980, Expression of a bacterial gene in mammalian cells, Science 209: 1422–1427.PubMedCrossRefGoogle Scholar
  29. Razzaque, A., Mizusawa, H., and Seidman, M. M., 1983, Rearrangement and mutagenesis of a shuttle vector plasmid after passage in mammalian cells, Proc. Natl. Acad. Sci. U.S.A. 80: 3010–3014.PubMedCrossRefGoogle Scholar
  30. Razzaque, A., Chakrabarti, S., Joffee, S., and Seidman, M., 1984, Mutagenesis of a shuttle vector plasmid in mammalian cells, Mol. Cell. Biol. 4: 435–441.PubMedGoogle Scholar
  31. Santangelo, G. M., and Cole, C. N., 1983, Preparation of a “functional library” of African green monkey DNA fragments which substitute for the processing/polyadenylation signal in the herpes simplex virus type I thymidine kinase gene, Mol. Cell. Biol. 3: 643–653.PubMedGoogle Scholar
  32. Sarkar, S., Dasgupta, U. B., and Summers, W. C., 1984, Error-prone mutagenesis detected in mammalian cells by a shuttle vector containing the supF gene of Escherichia coli, Mol. Cell. Biol. 4: 2227–2230.PubMedGoogle Scholar
  33. Sarver, N., Byrne, J. C., and Howley, P. M., 1982, Transformation and replication in mouse cells of a bovine papillomavirus-pML2 plasmid vector that can be rescued in bacteria, Proc. Natl. Acad. Sci. U.S.A. 79: 7147–7151.PubMedCrossRefGoogle Scholar
  34. Schenborn, E. T., Lund, E., Mitchen, J. L., and Dahlberg, J. E., 1985, Expression of a human Ul RNA gene introduced into mouse cells via bovine papillomavirus DNA vectors, Mol. Cell. Biol. 5: 1318–1326.PubMedGoogle Scholar
  35. Seidman, M. M., Dixon, K., Razzaque, A., Zagursky, R. J., and Berman, M. L., 1985, A shuttle vector plasmid for studying carcinogen-induced point mutations in mammalian cells, Gene 38: 233–237.PubMedCrossRefGoogle Scholar
  36. Sugden, B., Marsh, K., and Yates, J., 1985, A vector that replicates as a plasmid and can be efficiently selected in B-lymphoblasts transformed by Epstein—Barr virus, Mol. Cell. Biol. 5: 410–413.PubMedGoogle Scholar
  37. Tooze, J., 1981, DNA Tumor Viruses, 2nd ed., Cold Spring Harbor Press, Cold Spring Harbor, New York.Google Scholar
  38. Wake, C. T., Gudewicz, T., Porter, T., White, A., and Wilson, J. H., 1984, Mol. Cell. Biol. 4: 387–398.PubMedGoogle Scholar
  39. Wigler, M., Pellicer, A., Silverstein, S., and Axel, R., 1978, Biochemical transfer of single-copy eucaryotic genes using total cellular DNA as donor, Cell 14: 725–731.PubMedCrossRefGoogle Scholar
  40. Wigler, M., Sweet, R., Sim, G. K., Wold, B., Pellicer, A., Lacy, E., Maniatis, T., Silverstein, S., and Axel, R., 1979, Transformation of mammalian cells with genes from procaryotes and eucaryotes, Cell 16: 777–785.PubMedCrossRefGoogle Scholar
  41. Wilson, J. H., Berget, P. B., and Pipas, J. M., 1982, Somatic cells efficiently join unrelated DNA segments end-to-end, Mol. Cell. Biol. 2: 1258–1269.PubMedGoogle Scholar
  42. Winocour, E., and Keshet, J., 1980, Indiscriminate recombination in simian virus 40-infected monkey cells, Proc. Natl. Acad. Sci. U.S.A. 77: 4861–4865.PubMedCrossRefGoogle Scholar
  43. Yates, J., Warren, N., Reisman, D., and Sugden, B., 1984, A cis-acting element from the Epstein—Barr viral genome that permits stable replication of recombinant plasmids in latently infected cells, Proc. Natl. Acad. Sci. U.S.A. 81: 3806–3810.PubMedCrossRefGoogle Scholar
  44. Yates, J. L., Warren, N., and Sugden, B., 1985, Stable replication of plasmids derived from Epstein—Barr virus in various mammalian cells, Nature (London) 313: 812–815.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Michele P. Calos
    • 1
  1. 1.Department of GeneticsStanford University School of MedicineStanfordUSA

Personalised recommendations