Gene Transfer pp 223-241 | Cite as

Expression of Transfected Genes

  • Moses V. Chao


The stable introduction of cloned genes into mammalian cells has proven to be a widely used method to study the DNA sequences responsible for the regulation of eukaryotic gene expression. An implicit assumption of this approach is that transfected genes are capable of expression in the foreign cell and that transcription occurs at levels high enough to detect. There are now abundant examples of tissue-specific genes introduced into mammalian cells that are transcribed at measurable levels. This chapter will review examples of cell-specific genes and developmentally regulated genes that are expressed in foreign cellular environments and examine the parameters that govern the expression of these genes in mammalian cells. A generality that emerges from these examples is that cloned genes that are introduced into cells are frequently expressed even though the endogenous counterpart genes are not. Furthermore, several genes expressed normally in a tissue-specific manner can be regulated appropriately even when they are present in a foreign cellular environment.


Globin Gene Mouse Mammary Tumor Virus Immunoglobulin Gene Thymidine Kinase Gene Globulin Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albino, A. P., Graf, L. H., Kantor R. R. S., McLean, W., Silagi, S., and Old, L., 1985, DNA-mediated transfer of human melanoma cell surface glycoprotein gp130: Identification of transfectants by erythrocyte rosetting, Mol. Cell. Biol. 5: 692–697.PubMedGoogle Scholar
  2. Banerji, J. Olson, L., and Schaffner, W., 1983, A lymphocyte-specific cellular enhancer is located downstream of the joining region in immunoglobulin heavy chain genes, Cell 33:729–740.PubMedCrossRefGoogle Scholar
  3. Barbosa, J. A., Kamarck, M. E., Biro, P. A., Weissman, S. M., and Ruddle, F. H., 1982, Identification of human genomic clones coding the major histocompatibility antigens HLA-A2 and HLA-B7 by DNA mediated gene transfer, Proc. Natl. Acad. Sci. U.S.A. 79: 6327–6331.PubMedCrossRefGoogle Scholar
  4. Breathnach, R., Mantei, N., and Chambon, P., 1980, Correct splicing of a chicken ovalbumin gene transcript in mouse L cells, Proc. Natl. Acad. Sci. U.S.A. 77: 740–744.PubMedCrossRefGoogle Scholar
  5. Buetti, E., and Diggelmann, H., 1981, Cloned mouse mammary tumor virus DNA is biologically active in transfected mouse cells and its expression is stimulated by glucocorticoid hormones, Cell 23: 335–345.PubMedCrossRefGoogle Scholar
  6. Busslinger, M., Hurst, J., and Flaveli, R., 1983, DNA methylation and the regulation of globin gene expression, Cell 34: 197–206.PubMedCrossRefGoogle Scholar
  7. Camerini-Otero, R. D., and Zasloff, M. A., 1980, Nucleosome packaging of the thymidine kinase gene of herpes simplex virus transferred into mouse cells: An actively expressed single-copy gene, Proc. Natl. Acad. Sci. U.S.A. 77: 5079–5083.PubMedCrossRefGoogle Scholar
  8. Canaani, D., and Berg, P., 1982, Regulated expression of human interferon β1 gene after transduction into cultured mouse and rabbit cells, Proc. Natl. Acad. Sci. U.S.A. 79: 5166–5170.PubMedCrossRefGoogle Scholar
  9. Capecchi, M. R., 1980, High efficiency transformation by direct microinjection of DNA into cultured mammalian cells, Cell 22: 479–488.PubMedCrossRefGoogle Scholar
  10. Chao, M. V., Mellon, P., Charney, P., Maniatis, T., and Axel, R., 1983, The regulated expression of β-globin genes introduced into mouse erythroleukemia cells, Cell 32: 483–493.PubMedCrossRefGoogle Scholar
  11. Chao, M. V., Bothwell, M. A., Ross, A., Koprowski, H., Lanahan, A., Buck, C. R., and Sehgal, A., 1986, Gene transfer and molecular cloning of the human NGF receptor, Science 232: 518–521.PubMedCrossRefGoogle Scholar
  12. Charney, P., Treisman, R., Mellon, P., Chao, M., Axel, R., and Maniatis, T., 1984, Differences in human α-and β-globin gene expression in mouse erythroleukemia cells: The role of intragenic sequences, Cell 38: 251–263.CrossRefGoogle Scholar
  13. Corces, V., Pellicer, A., Axel, R., and Meselson, M., 1981, Integration, transcription, and control of a Drosophila heat shock gene in mouse cells, Proc. Natl. Acad. Sci. U.S.A. 78: 7038–7042.PubMedCrossRefGoogle Scholar
  14. Cosgrove, L. H., Sandrin, M. S., Rajaskariah, P., and Makausie, I. F. C., 1986, A genomic clone encoding the a chain of the OKMI LFA-1, and platelet glycoprotein IIb-IIIa molecules, Proc. Natl. Acad. Sci. U.S.A. 83: 752–756.PubMedCrossRefGoogle Scholar
  15. Deisseroth, A., and Hendrick, D., 1978, Human a-globin gene expression following chromosomal dependent gene transfer into mouse erythroleukemia cells, Cell 15: 55–63.PubMedCrossRefGoogle Scholar
  16. Dierks, P., van Ooyen, A., Mantei, N., and Weissmann, C., 1981, DNA sequences preceding the rabbit β-globin gene are required for formation in mouse L cells of β-globin RNA with the correct 5’ terminus, Proc. Natl. Acad. Sci. U.S.A. 78: 1411–1415.PubMedCrossRefGoogle Scholar
  17. Fujita, T., Ohno, S., Yasumitsu, H., and Toniguchi, T., 1985, Delimitation and properties of DNA sequences for the regulated expression of human interferon-β gene, Cell 41: 489–496.PubMedCrossRefGoogle Scholar
  18. Gillies, S. D., and Tonegawa, S., 1983, Expression of cloned immunoglobulin genes introduced into mouse L cells, Nucleic Acids Res. 11: 7981–7997.CrossRefGoogle Scholar
  19. Gillies, S. D., Morrison, S. L., Oi, V. T., and Tonegawa S., 1983, A tissue-specific transcription enhancer element is located in the major intron of a rearranged immunoglobulin heavy chain gene, Cell 33: 717–728.PubMedCrossRefGoogle Scholar
  20. Goodbourn, S., Zinn, K., and Maniatis, T., 1985, Human B-interferon gene expression is regulated by an inducible enhancer element, Cell 41: 509–520.PubMedCrossRefGoogle Scholar
  21. Gopal, T. V., Shimada, T., Baur, A. W., and Nienhuis, A. W., 1985, Contribution of promoter to tissue-specific expression of the mouse immunoglobulin kappa genes, Science 229: 1102–1104.PubMedCrossRefGoogle Scholar
  22. Graham, F. L., and van der Eb, A. J., 1973, A new technique for the assay of infectivity of human adenovirus 5 DNA, Virology 52: 456–467.PubMedCrossRefGoogle Scholar
  23. Hansen, J. N., Konkel, D. A., and Leder, P., 1982, The sequence of a mouse embryonic 3-globin gene, J. Biol. Chem. 257: 1048–1052.PubMedGoogle Scholar
  24. Hauser, H., Gross, G., Bruns, W., Hochkeppel, H.-K., Mayr, U., and Collins, J., 1982, Inducibility of human ß-interferon gene in mouse L-cell clones, Nature (London) 297: 650–654.CrossRefGoogle Scholar
  25. Herman, A., Parham, P., Weissman, S. M., and Engelhard, V. H., 1983, Recognition by xenogeneic cytotoxic T lymphocytes of cells expressing HLA-A2 or HLA-B7 after DNA-mediated gene transfer, Proc. Natl. Acad. Sci. U.S.A. 80: 5056–5060.PubMedCrossRefGoogle Scholar
  26. Hsiung, N., Roginski, R. S., Henthorn, P., Smithies, O., Kucherlapati, R., and Skoultchi, A. I., 1982, Introduction and expression of a fetal human globin gene in mouse fibroblasts, Mol. Cell. Biol. 2: 401–411.PubMedGoogle Scholar
  27. Hsu, C., Kavathas, P., and Herzenberg, L. A., 1984, Cell-surface antigens expressed on L cells transfected with whole DNA from non-expressing and expressing cells, Nature (London) 312: 68–69.CrossRefGoogle Scholar
  28. Hynes, N. E., Kennedy, N., Rahmsdorf, U., and Groner, B., 1981, Hormone-responsive expression of an endogenous provirus gene of mouse mammary tumor virus after molecular cloning and gene transfer into cultured cells, Proc. Natl. Acad. Sci. U.S.A. 78: 2038–2042.PubMedCrossRefGoogle Scholar
  29. Ishiura, M., Hirose, S., Uchida, T., Hamada, Y., Suzuki, Y., and Okada, Y., 1982, Phage particle-mediated gene tranfer to cultured mammalian cells, Mol. Cell. Biol. 2: 607–616.PubMedGoogle Scholar
  30. Kavathas, P., and Herzenberg, L., 1983, Stable transformation of mouse L cells for human membrane T-cell differentiation antigens, HLA, and β2-microglobulin: Selection by fluorescence-activated cell sorting, Proc. Natl. Acad. Sci. U.S.A. 80: 524–528.PubMedCrossRefGoogle Scholar
  31. Kioussis, D., Wilson, F., Khazaie, K., and Grosveld, F., 1985, Differential expression of human globin genes introduced into K562 cells, EMBO J. 4: 927–931.PubMedGoogle Scholar
  32. Kuhn, L. C., McClelland, A., and Ruddle, F. H., 1984, Gene transfer, expression, and molecular cloning of the human transferrin receptor gene, Cell 37: 95–103.PubMedCrossRefGoogle Scholar
  33. Kurtz, D. T., 1981, Hormonal inducibility of rat α-globulin genes in transfected mouse cells, Nature (London) 291: 629–631.CrossRefGoogle Scholar
  34. Lai, E. C., Woo, S. L. C., Bordelon-Riser, M. E., Fraser, T. H., and O’Malley, B. A., 1980, Ovalbumin is synthesized in mouse cells transformed with the natural chicken ovalbumin gene, Proc. Natl. Acad. Sci. U.S.A. 77: 244–248.PubMedCrossRefGoogle Scholar
  35. Lau, J. T. Y., Pittenger, M. F., and Cleveland, D. W., 1985, Reconstruction of appropriate tubulin and actin gene regulation after transient transfection of cloned 3-tubulin and 13-actin genes, Mol. Cell. Biol. 5: 1611–1620.PubMedGoogle Scholar
  36. Littman, D. R., Thomas, Y., Madden, P. J., Chess, L., and Axel, R., 1985, The isolation and sequence of the gene encoding T8: A molecule defining functional classes of T lymphocytes, Cell 40: 237–246.PubMedCrossRefGoogle Scholar
  37. Madden, P. J., Littman, D. R., Godfrey, M., Maddon, D. E., Chess, L., and Axel, R., 1985, The isolation and nucleotide sequence of a cDNA encoding the T cell surface protein T4: A new member of the immunoglobulin gene family, Cell 42: 93–104.CrossRefGoogle Scholar
  38. Mantei, N., and Weissmann, C., 1982, Controlled transcription of a human A-interferon gene introduced into mouse L cells, Nature (London) 297: 128–132.CrossRefGoogle Scholar
  39. Mantei, N., Boll, W., and Weissmann, C., 1979, Rabbit β-globin mRNA production in mouse L cells transformed with cloned rabbit β-globin chromosomal DNA, Nature (London) 281: 40–46.CrossRefGoogle Scholar
  40. Mason, J. O., Williams, G. T., and Neuberger, M. S., 1985, Transcriptional cell type specificity is conferred by an immunoglobulin VH gene promoter that includes a functional consensus sequence, Cell 41: 479–487.PubMedCrossRefGoogle Scholar
  41. Mayo, K. E., Warren, R., and Palmiter, R. D., 1982, The mouse metallothionein-I gene is transcriptionally regulated by cadmium following transfection into human or mouse cells, Cell 29: 99–108.PubMedCrossRefGoogle Scholar
  42. Neumann, E., Shaefer-Ridder, M., Wang, Y., and Hofschneider, F., 1982, Gene transfer into mouse lyoma cells by electroporation in high electric fields, EMBO J 1: 841–845.PubMedGoogle Scholar
  43. Nudel, U., Greenberg, D., Ordahl, C. P., Saxel, O., Neuman, S., and Yaffe, D., 1985, Developmentally regulated expression of a chicken muscle-specific gene in stably transfected rat myogenic cells, Proc. Natl. Acad. Sci. U.S.A. 82: 3106–3109.PubMedCrossRefGoogle Scholar
  44. Ohashi, P. S., Mak, T. W., Van den Eisen, P., Yanagi, Y., Yoshikai, Y., Calman, A. F., Terhorst, C., Stobo, J. D., and Weiss, A., 1985, Reconstitution of an active surface T3/T-cell antigen receptor by DNA transfer, Nature (London) 316: 606–609.CrossRefGoogle Scholar
  45. Ohno, S., and Taniguchi, T., 1982, Inducer-responsive expression of the cloned human interferon β1 gene introduced into cultured mouse cells, Nucleic Acids Res. 10: 967–977.PubMedCrossRefGoogle Scholar
  46. Pelham, H. R. B., 1982, A regulatory upstream promoter element in the Drosophila hsp 70 heat-shock gene, Cell 30: 517–527.PubMedCrossRefGoogle Scholar
  47. Perucho, M., Hanahan, D., Lipsich, L., and Wigler, M., 1980, Genetic and physical linkage of exogenous sequences in transformed cells, Cell 22: 309–317.PubMedCrossRefGoogle Scholar
  48. Picard, D., and Schaffner, W., 1984, A lymphocyte specific enhancer in the mouse immunoglobulin κ gene, Nature (London) 307: 80–82.CrossRefGoogle Scholar
  49. Pitha, P. M., Ciufo, D. M., Kellum, M., Raj, N. B. K., Reyes, G. R., and Hayward, G. S., 1982, Induction of human β-interferon synthesis with poly(rI rC) in mouse cells transfected with cloned cDNA plasmids, Proc. Natl. Acad. Sci. U.S.A. 79: 4337–4341.PubMedCrossRefGoogle Scholar
  50. Potter, H., Weir, L., and Leder, P., 1984, Enhancer-dependent expression of human μ immunoglobulin genes introduced into mouse pre-B lymphocytes by electroporation, Proc. Natl. Acad. Sci. U.S.A. 81: 7161–7165.PubMedCrossRefGoogle Scholar
  51. Rabourdin-Combe, C., and Mach, B., 1983, Expression of HLA-DR antigens at the surface of mouse L cells co-transfected with cloned human genes, Nature (London) 303: 670–674.CrossRefGoogle Scholar
  52. Robins, D., Ripley, S., Henderson, A. S., and Axel, R., 1981, Transforming DNA integrates into the host chromosome, Cell 23: 29–39.PubMedCrossRefGoogle Scholar
  53. Robins, D., Paek, I., Seeburg, P. H., and Axel, R., 1982, Regulated expression of human growth hormone genes in mouse cells, Cell 29: 623–631.PubMedCrossRefGoogle Scholar
  54. Roginski, R. S., Skoultchi, A. I., Henthron, P., Smithies, O., Hsiung, N., and Kucherlapati, R., 1983, Coordinate modulation of transfected HSV thymidine kinase and human globin genes, Cell 35: 149–155.PubMedCrossRefGoogle Scholar
  55. Schaffner, W., 1980, Direct transfer of cloned genes from bacteria to mammalian cells, Proc. Natl. Acad. Sci. U.S.A. 77: 2163–2167.PubMedCrossRefGoogle Scholar
  56. Spandidos, D. A., and Paul, J., 1982, Transfer of human globin genes to erythroleukemic mouse cells, EMBO J. 1: 15–20.PubMedGoogle Scholar
  57. Stafford, J., and Queen, C., 1983, Cell-type specific expression of a transfected immunoglobulin gene, Nature (London) 306: 77–79.CrossRefGoogle Scholar
  58. Stanners, C. P., Lam, T., Chamberlain, J. W., Stewart, S. S., and Price, G. B., 1981, Cloning of a functional gene responsible for the expression of a cell surface antigen correlated with human chronic lymphocytic leukemia, Cell 27: 211–221.PubMedCrossRefGoogle Scholar
  59. Stein, R., Razin, A., and Cedar, H., 1982, In vitro methylation of the hamster adenine phosphoribosyltransferase gene inhibits its expression in mouse L cells, Proc. Natl. Acad. Sci. U.S.A. 79: 3418–3422.Google Scholar
  60. Sweet, R. W., Chao, M. V., and Axel, R., 1982, The structure of the thymidine kinase gene promoter: Nuclease hypersensitivity correlates with expression, Cell 31: 347–353.PubMedCrossRefGoogle Scholar
  61. Weidle, U., and Weissmann, C., 1983, The 5’-flanking region of a human IFN-a gene mediates viral induction of transcription, Nature (London) 303: 442–446.CrossRefGoogle Scholar
  62. Weintraub, H., 1983, A dominant role for DNA secondary structure in forming hypersensitive structures in chromatin, Cell 32: 1191–1203.PubMedCrossRefGoogle Scholar
  63. Wold, B., Wigler, M., Lacy, E., Maniatis, T., Silverstein, S., and Axel, R., 1979, Introduction and expression of a rabbit β-globin gene in mouse fibroblasts, Proc. Natl. Acad. Sci. U.S.A. 76: 5684–5688.PubMedCrossRefGoogle Scholar
  64. Wright, S., de Boer, E., Grosveld, F. G., and Flavell, R. A., 1983, Regulated expression of the human B-globin family in erythroleukemia cells, Nature 305: 333–336.PubMedCrossRefGoogle Scholar
  65. Wright, S., Rosenthal, A., Flavell, R., and Grosveld, F., 1984, DNA sequences required for regulated expression of B-globin in murine erythroleukemia cells, Cell 38: 265–273.PubMedCrossRefGoogle Scholar
  66. Zinn, K., Mellon, P., Ptashne, M., and Maniatis, T., 1982, Regulated expression of an extrachromosomal human β-interferon gene in mouse cells, Proc. Natl. Acad. Sci. U.S.A. 79: 4897–4901.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Moses V. Chao
    • 1
  1. 1.Department of Cell Biology and Anatomy and Hematology/Oncology DivisionCornell University Medical CollegeNew YorkUSA

Personalised recommendations