Gene Transfer pp 189-221 | Cite as

Transgenic Mice: Gene Transfer into the Germ Line

  • Shirley M. Tilghman
  • Arnold J. Levine


The discipline of biology has witnessed a virtual revolution in the past ten years, beginning with the development of recombinant DNA techniques that permitted one to isolate specific genes and to study their structure and function. The next critical stage in this revolution was the development of the technology to reintroduce these genes back into living organisms. The questions that can be posed with this combination of techniques are many, from the identification of cis-acting sequences required for tissue-specific developmental regulation of a gene to the consequences of inappropriate expression of a cellular oncogene. In a sense, a review of this field at this time is premature. The realization that investigators can alter both the genotype and the phenotype of an animal is just starting to be exploited, and this chapter reflects the fact that the initial attempts, while vastly encouraging, are not without problems. Nevertheless, both the advantages and limitations of the transgenic mouse system are beginning to be realized.


Transgenic Mouse Cold Spring Harbor Long Terminal Repeat Embryonal Carcinoma Cell Polyoma Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Riser, R., and Pollack, R., 1974, A nonselective analysis of SV40 transformation of mouse 3T3 cells, Virology 59: 477–489.Google Scholar
  2. Abramczuk, J., Vorbrodt, A., Solter, D., and Koproswki, H., 1978, Infection of mouse preimplantation embryos with simian virus 40 and polyoma virus, Proc. Natl. Acad. Sci. U.S.A. 75: 999–1003.PubMedGoogle Scholar
  3. Alt, F. W., Enea, V., Bothwell, A. L. M., and Baltimore, D., 1980, Activity of multiple light chain genes in murine myeloma cells producing a single functional light chain, Cell 21: 1–12.PubMedGoogle Scholar
  4. Alt, F. W., Rosenberg, N., Enea, V., Siden, E., and Baltimore, D., 1982, Multiple immunoglobulin heavy-chain gene transcripts in Abelson murine leukemia virus-transformed lymphoid cell lines, Mol. Cell. Biol. 2: 286–400.Google Scholar
  5. Banerji, J., Olson, L., and Schaffner, W., 1983, A lymphocyte-specific cellular enhancer is located downstream of the joining region in immunoglobulin heavy chain genes, Cell 33: 729–740.PubMedGoogle Scholar
  6. Bernard, O., Gough, N., and Adams, J., 1981, Plasmacytomas with more than one immunoglobulin KMRNA: Implications for allelic exclusion, Proc. Natl. Acad. Sci. U.S.A. 78: 5812–5816.PubMedGoogle Scholar
  7. Brinster, R. L., Chen, H. Y., Trumbauer, M., Denear, A. W., Warren, R., and Palmiter, R. D., 1981, Somatic expression of herpes thymidine kinase in mice following injection of a fusion gene into eggs, Cell 27: 223–231.PubMedGoogle Scholar
  8. Brinster, R. L., Ritchie, K. A., Hammer, R. E., O’Brien, R. L., Arp, B., and Storb, U., 1983, Expression of a microinjected immunoglobulin gene in the spleen of transgenic mice, Nature (London) 306: 332–336.Google Scholar
  9. Brinster, R. L., Chen, H. Y., Messing, A., van Dyke, T., Levine, A. J., and Palmiter, R. D., 1984, Transgenic mice harboring SV40 T-antigen genes develop characteristic brain tumors, Cell 37: 367–379.PubMedGoogle Scholar
  10. Brinster, R. L., Chen, H. Y., Trumbauer, M. E., Yagle, M. K., and Palmiter, R. D., 1985, Factors affecting the efficiency of introducing foreign DNA into mice by microinjecting eggs, Proc. Natl. Acad. Sci. U.S.A. 82: 4438–4442.PubMedGoogle Scholar
  11. Chada, K., Magram, J., Raphael, K., Radice, G., Lacy, E., and Constantini, F., 1985, Specific expression of a foreign 0-globin gene in erythroid cells of transgenic mice, Nature (London) 314: 377–380.Google Scholar
  12. Charnay, P., Treisman, R., Mellon, P., Chao, M., Axel, R., and Maniatis, T., 1984, Differences in human a-and 3-globin gene expression in mouse erythroleukemia cells: The role of intragenic sequences, Cell 38: 251–263.PubMedGoogle Scholar
  13. Coleclough, C., Perry, R., Karjalainen, K., and Weigert, M., 1981, Aberrant rearrangements contribute significantly to the allelic exclusion of immunoglobulin gene expression, Nature (London) 290: 372–378.Google Scholar
  14. Cooper, G. M., and Neiman, P. E., 1980, Transforming gene of neoplasms induced by avian leukosis viruses, Nature (London) 287: 656–659.Google Scholar
  15. Costantini, F., and Lacy, E., 1981, Introduction of a rabbit 3-globin gene into the mouse germ line, Nature (London) 294: 92–94.Google Scholar
  16. Costantini, F., Radice, G., Magram, J., Stamatoyannopoulos, G., Papayannopoulou, T., and Chada, K., 1985, Developmental regulation of human globin genes in transgenic mice, Cold Spring Harbor Symp. Quant. Biol. 50: 361–370.PubMedGoogle Scholar
  17. Dandolo, L., Blangy, D., and Kamen, R., 1983, Regulation of polyoma virus transcription in mutine embryonal carcinoma cells, J. Virol. 47: 55–64.PubMedGoogle Scholar
  18. Daughaday, W. H., Hall, K., Rahen, M. S., Salmon, W. R., Jr., Van den Brande, J. L., and Van Wyke, J. J., 1972, Somatomedin: Proposed designation for sulfation factor, Nature (London) 235: 107–109.Google Scholar
  19. Doerfler, W., 1983, DNA methylation and gene activity, Annu. Rev. Biochem. 52: 93–124.PubMedGoogle Scholar
  20. Eicher, E. M., and Bearner, W. G., 1976, Inherited ateliotic dwarfism in mice, J. Hered. 67: 87–91.PubMedGoogle Scholar
  21. Edlund, T., Walker, M. D., Barr, P. J., and Rutter, W. J., 1985, Cell specific expression of the rat insulin gene: Evidence for role of two distinct 5’ flanking elements, Science 230: 912–916.PubMedGoogle Scholar
  22. Efstratiadis, A., Posakony, J. W., Maniatis, T., Lawn, R. M., O’Connell, C., Spritz, R. A., DeRiel, J. K., Forget, B. G., Slighton, L., Blechl, A. E., Smithies, O., Baralle, F. E., Shoulders, C. C., and Proudfoot, N. J., 1980, The structure and evolution of the 3-globin gene family, Cell 21: 653–668.PubMedGoogle Scholar
  23. Frels, W. I., Bluestone, J. A., Hodes, R. J., Capecchi, M. R., and Singer, D. S., 1985, Expression of a microinjected porcine class I major histocompatibility complex gene in transgenic mice, Science 228: 577–580.PubMedGoogle Scholar
  24. Fujimura, F., and Linney, E., 1982, Polyoma mutants that productively infect F9 embryonal carcinoma cells do not rescue wild-type polyoma in F9 cells, Proc. Natl. Acad. Sci. U.S.A. 79: 1479–1483.PubMedGoogle Scholar
  25. Fujimura, F. K., Deininger, P. L., Friedmann, T., and Linney, E., 1981, Mutation near the polyoma DNA replication origin permits productive infection of F9 embryonal carcinoma cells, Cell 23: 809–814.PubMedGoogle Scholar
  26. Gautsch, J. W., and Wilson, M. C., 1983, Delayed de novo methylation in teratocarcinoma cells suggests additional tissue specific mechanisms for controlling gene expression, Nature (London) 301: 32–35.Google Scholar
  27. Gillies, S. D., Morrison, S. L., Oi, V. T., and Tonegawa, S., 1983, A tissue-specific transcription enhancer element is located in the major intron of a rearranged immunoglobulin heavy chain gene, Cell 33: 717–728.PubMedGoogle Scholar
  28. Godbout, R., Ingram, R., and Tilghman, S. M., 1986, Multiple regulatory elements in the intergenic region between the a-fetoprotein and albumin genes, Mol. Cell. Biol. 6: 477–487.PubMedGoogle Scholar
  29. Goodbourn, S., Zinn, K., and Maniatis, T., 1985, Human 13-interferon gene expression is regulated by an inducible enhancer element, Cell 41: 509–520.PubMedGoogle Scholar
  30. Gordon, J. W., Scangos, G. A., Plotkin, D. J., Barbosa, J. A., and Ruddle, F. H., 1982, Genetic transformation of mouse embryos by microinjection of purified DNA, Proc. Natl. Acad. Sci. U.S.A. 77: 7380–7384.Google Scholar
  31. Grosschedl, R., and Baltimore, D., 1985, Cell-type specificity of immunoglobulin gene expression is regulated by at least three DNA sequence elements, Cell 41: 885–897.PubMedGoogle Scholar
  32. Grosschedl, R., Weaver, D., Baltimore, D., and Costantini, F., 1984, Introduction of a a immunoglobulin gene into the mouse germ line: Specific expression in lymphoid cells and synthesis of functional antibody, Cell 38: 647–658.PubMedGoogle Scholar
  33. Hammer, R. E., Palmiter, R. D., and Brinster, R. L., 1984, Partial correction of murine hereditary growth disorder by germ line incorporation of a new gene, Nature (London) 311: 65–67.Google Scholar
  34. Hammer, R. E., Brinster, R. L., and Palmiter, R. D., 1985a, Use of gene transfer to increase animal growth, Cold Spring Harbor Symp. Quant. Biol. 50: 379–388.PubMedGoogle Scholar
  35. Hammer, R. E., Brinster, R. L., Rosenfeld, M. G., Evans, R. M., and Mayo, K. E., 1985b, Expression of human growth hormone releasing factor in transgenic mice results in increased somatic growth, Nature (London) 315: 413–416.Google Scholar
  36. Hanahan, D., 1985, Heritable formation of pancreatic 13-cell tumors in transgenic mice expressing recombinant insulin/SV40 oncogene, Nature (London) 315: 115–122.Google Scholar
  37. Hann, S. R., and Eisenman, R. N., 1984, Proteins encoded by the human c-myc oncogene: Differential expression in neoplastic cells, Mol. Cell. Biol. 4: 2486–2497.PubMedGoogle Scholar
  38. Hayward, W. S., Ned, B. G., and Astrin, S. M., 1981, Activation of a cellular one gene by promoter insertion in ALV-induced lymphoid leukosis, Nature (London) 290: 475–480.Google Scholar
  39. Huebner, K., Linnenbach, A., Ghosh, P. K., Rushdi, A., Romanczuk, H., Tsuchida, N., and Croce, C. M., 1983, Tumor virus genomes in DNA-transformed F9 cells, in: Cold Spring Harbor Conferences on Cell Proliferation 10 ( L. M. Silver, G. R. Martin, and S. Strickland, eds.), pp. 343–361, Cold Spring Harbor Press, Cold Spring Harbor, New York.Google Scholar
  40. Jaenisch, R., 1974, Infection of mouse blastocysts with SV40 DNA: Normal development of the infected embryos and persistence of SV40 specific DNA sequences in the adult animals, Cold Spring Harbor Symp. Quant. Biol. 39: 375–380.Google Scholar
  41. Jaenisch, R., and Berns, A., 1977, Tumour virus expression during mammalian embryogenesis, in: Concepts in Mammalian Embryogenesis ( M. J. Sherman, ed.), pp. 267–314, MIT Press, Cambridge, Massachusetts.Google Scholar
  42. Jaenisch, R., and Mintz, B., 1974, Simian virus 40 DNA sequences in DNA of healthy adult mice derived from preimplantation blastocysts injected with viral DNA, Proc. Natl. Acad. Sci. U.S.A. 71: 1250–1254.PubMedGoogle Scholar
  43. Jaenisch, R., Fan, H., and Croker, B., 1975, Infection of preimplantation mouse embryos and of newborn mice with leukaemia virus: Tissue distribution of viral DNA and RNA leukemogenesis in the adult animal, Proc. Natl. Acad. Sci. U.S.A. 72: 4008–4012.PubMedGoogle Scholar
  44. Jaenisch, R., Jähner, D., Nobis, P., Simon, I., Löhler, J., Harbers, K., and Grotkopp, D., 1981, Chromosomal position and activation of retroviral genomes inserted into the germ line of mice, Cell 24: 519–529.PubMedGoogle Scholar
  45. Jaenisch, R., Harbers, K., Schnieke, A., Löhler, J., Chumakov, I., Jähner, D., Grotkopp, D., and Hoffman, E., 1983, Germline integration of Moloney murine leukaemia virus at the Mov13 locus leads to recessive lethal mutation and early embryonic death, Cell 32: 209–216.PubMedGoogle Scholar
  46. Jähner, D., and Jaenisch, R., 1985, Chromosomal position and specific demethylation in enhancer sequences of germ line-transmitted retroviral genomes during mouse development, Mol. Cell. Biol. 5: 2212–2220.PubMedGoogle Scholar
  47. Jähner, D., Stuhlmann, H., Stewart, C. L., Harbers, K., Löhler, J., Simon, I., and Jaenisch, R., 1982, De novo methylation and expression of retroviral genomes during mouse embryogenesis, Nature (London) 298: 623–628.Google Scholar
  48. Jähner, D., Haase, K., Mulligan, R., and Jaenisch, R., 1985, Insertion of the bacterial gpt gene into the germ line of mice by retroviral infection, Proc. Natl. Acad. Sci. U.S.A. 82: 6927–6931.PubMedGoogle Scholar
  49. Kelly, F., and Condamine, H., 1982, Tumor viruses and early mouse embryos, Biochim. Biophys. Acta 651: 105–141.PubMedGoogle Scholar
  50. Kelly, K., Cochran, B. H., Stiles, C. D., and Leder, P., 1983, Cell-specific regulation of the c- myc gene by lymphocyte mitogens and platelet-derived growth factor, Cell 35: 603–610.PubMedGoogle Scholar
  51. Kemp, D. J., Harris, A. W., Corey, S., and Adams, T. M., 1980, Expression of the immunoglobulin Cp, gene in T and B lymphoid and myeloid cell lines, Proc. Natl. Acad. Sci. U.S.A. 77: 2876–2880.PubMedGoogle Scholar
  52. Konieczny, S. F., and Emerson, C. P., Jr., 1985, Differentiation, not determination, regulates muscle gene activation: Transfection of troponin I genes in multipotential and muscle lineages of 10T112 cells, Mol. Cell. Biol. 5: 2423–2432.PubMedGoogle Scholar
  53. Krumlauf, R., Hammer, R., Tilghman, S., and Brinster, R. L., 1985a, Developmental regulation of a a-fetoprotein genes in transgenic mice, Mol. Cell. Biol. 5: 1639–1648.PubMedGoogle Scholar
  54. Krumlauf, R., Hammer, R. E., Brinster, R., Chapman, V. M., and Tilghman, S. M., 1985b, Regulated expression of ce-fetoprotein genes in transgenic mice, Cold Spring Harbor Symp. Quant. Biol. 50: 371–378.PubMedGoogle Scholar
  55. Kwan, S.-P., Max, E. E., Seidman, J. G., Leder, P., and Scharff, M. D., 1981, Two kappa immunoglobulin genes are expressed in the myeloma S107, Cell 26: 57–66.PubMedGoogle Scholar
  56. Lacy, E., Roberts, S., Evans, E. P., Burtenshaw, M. D., and Costantini, F., 1983, A foreign 13globin gene in transgenic mice: Integration at abnormal chromosomal positions and expression in inappropriate tissues, Cell 34: 343–358.PubMedGoogle Scholar
  57. Land, H., Parada, L. F., and Weinberg, R. A., 1983, Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes, Nature (London) 304: 596–602.Google Scholar
  58. Le Meur, M., Gerlinger, P., Benoist, C., and Mathis, D., 1985, Correcting an immune response deficiency by creating E,. gene transgenic mice, Nature (London) 316: 38–42.Google Scholar
  59. Levine, A. J., 1979, Permanent teratocarcinoma-derived cell lines stabilized by transformation with SV40 and SV40 tsA mutant viruses, J. Int. Cytol. Suppl. 10: 173–189.Google Scholar
  60. Levine, A. J., 1982, The nature of the host range restriction of SV40 and polyoma viruses in embryonal carcinoma cells, Curr. Top. Microbiol. Immunol. 101: 1–30.PubMedGoogle Scholar
  61. Levine, A. J. (ed.), 1984, The Transformed Phenotype, Cold Spring Harbor Press, Cold Spring Harbor, New York.Google Scholar
  62. Linnebach, A., Huebner, K., and Croce, C. M., 1980, DNA transformed murine teratocarcinoma cells: Regulation of expression of simian virus 40 tumor antigen in stem versus differentiated cells, Proc. Natl. Acad. Sci. U.S.A. 77: 4875–4879.Google Scholar
  63. Linnebach, A., Huebner, K., and Croce, C. M., 1981, Transcription of the simian virus 40 genome in DNA-transformed murine teratocarcinoma stem cells, Proc. Natl. Acad. Sci. U.S.A. 78: 6386–6390.Google Scholar
  64. Linney, E., David, B., Overhauser, J., Chao, E., and Fan, H., 1984, Non-function of a Moloney murine leukaemia virus regulatory sequence in F9 embryonal carcinoma cells, Nature (London) 380: 470–472.Google Scholar
  65. Low, M. J., Hammer, R. E., Goodman, R. H., Habener, J. F., Palmiter, R. D., and Brinster, R. L., 1985, Tissue-specific posttranslational processing of pre-prosomatostatin encoded by a metallothionein-somatostatin fusion gene in transgenic mice, Cell 41: 211–219.PubMedGoogle Scholar
  66. Magram, J., Chada, K., and Costantini, F., 1985, Developmental regulation of a cloned adult 3globin gene in transgenic mice, Nature (London) 315: 338–340.Google Scholar
  67. Maltzman, W., Linzer, D. I., Brown, F., Teresky, A. K., Rosenstraus, M., and Levine, A. J., 1979, Permanent teratocarcinoma-derived cell lines stabilized by transformation with SV40 and SV4OtsA mutant viruses, Int. Rev. Cytol. 10: 173–89.Google Scholar
  68. Maltzman, W., and Levine, A. J., 1981, Viruses as probes for development and differentiation, Adv. Virus. Res. 26: 65–117.PubMedGoogle Scholar
  69. McKnight, G. S., Hammer, R. E., Kuenzel, E. A., and Brinster, R. L., 1983, Expression of the chicken transferrin gene in transgenic mice, Cell 34: 335–341.PubMedGoogle Scholar
  70. Messing, A., Chen, H. Y., Palmiter, R. D., and Brinster, R. L., 1985, Peripheral neuropathies, hepatocellular carcinomas, and islet cell adenomas in transgenic mice, Nature (London) 316: 461–463.Google Scholar
  71. Neel, B. G., Hayward, W. S., Robinson, H. L., Fang, J., and Astrin, S. M., 1981, Avian leukosis virus-induced tumors have common proviral integration sites and synthesize discrete new RNAs: Oncogenesis by promoter insertion, Cell 23: 323–334.PubMedGoogle Scholar
  72. Nelson, K. J., Haimovich, J., and Perry, R., 1983, Characterization of productive and sterile transcripts from the immunoglobulin heavy chain focus: Processing of C,R, and C, mRNA, Mol. Cell. Biol. 3: 1317–1332.PubMedGoogle Scholar
  73. Niwa, O., Yokota, Y., Ishida, H., and Sugahara, T., 1983, Independent mechanisms involved in suppression of the Moloney leukaemia virus genome during differentiation of murine teratocarcinoma cells, Cell 22: 1105–1113.Google Scholar
  74. Notkins, A. L. and Oldstone, M. B. A. (eds.), 1984, Concepts in Viral Pathogenesis, Springer-Verlag, New York.Google Scholar
  75. Nudel, U., Greenberg, D., Ordahl, C. P., Saxel, O., Neuman, S., and Yaffe, D., 1985, Developmentally regulated expression of a chicken muscle-specific gene in stably transfected rat myogenic cells, Proc. Natl. Acad. Sci. U.S.A. 82: 3106–3109.PubMedGoogle Scholar
  76. Ornitz, D. M., Palmiter, R. D., Hammer, R. E., Brinster, R. L., Swift, G. H., and McDonald, J. R., 1985, Specific expression of an elastase—human growth hormone fusion gene in pancreatic acinar cells of transgenic mice, Nature (London) 313: 600–602.Google Scholar
  77. Overbeek, P. A., Chepelinsky, A., Khillan, J. S., Piatigorsky, J., and Westphal, H., 1985, Lens-specific expression and developmental regulation of the bacterial chloramphenicol acetyltransferase gene driven by the murine aA-crystallin promoter in transgenic mice, Proc. Natl. Acad. Sci. U.S.A. 82: 7815–7819.PubMedGoogle Scholar
  78. Palmiter, R. D., Brinster, R. L., Hammer, R. E., Trumbauer, M. E., Rosenfeld, M. G., Bimberg, N. C., and Evans, R. M., 1982a, Dramatic growth of mice that develop from eggs microinjected with metallothionein—growth hormone fusion genes, Nature (London) 300: 611–615.Google Scholar
  79. Palmiter, R. D., Chen, H. Y., and Brinster, R. L., 1982b, Differential regulation of metallothionein—thymidine kinase fusion gene in transgenic mice and their offspring, Cell 29: 701–710.PubMedGoogle Scholar
  80. Palmiter, R. D., Norstedt, G., Gelinas, R. E., Hammer, R. E., and Brinster, R. L., 1983, Metallothionein—human GH fusion genes stimulate growth of mice, Science 222: 809–814.PubMedGoogle Scholar
  81. Palmiter, R. D., Chen, H. Y., Messing, A., and Brinster, R. L., 1985, SV40 enhancer and large-T antigen are instrumental in development of choroid plexus tumours in transgenic mice, Nature (London) 316: 457–460.Google Scholar
  82. Payne, G. S., Bishop, J. M., and Varmus, H. E., 1982, Multiple arrangements of viral DNA and an activated host oncogene in bursal lymphomas, Nature (London) 295: 209–214.Google Scholar
  83. Pinkert, C. A., Widera, G., Cowing, C., Heber-Katz, E., Palmiter, R. D., Flavel, R. A., and Brinster, R. L., 1985, Tissue-specific, inducible and functional expression of the Eâ MHC class II gene in transgenic mice, EMBO J. 4: 2225–2230.Google Scholar
  84. Queen, C., and Baltimore, D., 1983, Immunoglobulin gene transcription is activated by downstream sequence elements, Cell 33: 741–748.PubMedGoogle Scholar
  85. Riser, R., and Pollack, R., 1974, A nonselective analysis of SV40 transformation of mouse 3T3 cells, Virology 59: 477–489.Google Scholar
  86. Ritchie, K. A., Brinster, R. L., and Storb, U., 1984, Allelic exclusion and control of endogenous immunoglobulin gene rearrangement in K transgenic mice, Nature (London) 312: 517–520.Google Scholar
  87. Rusconi, S., and Köhler, G., 1985, Transmission and expression of a specific pair of rearranged immunoglobulin µ and K genes in a transgenic mouse line, Nature (London) 314: 330–334.Google Scholar
  88. Scott, R. W., Vogt, T. F., Croke, M. E., and Tilghman, S. M., 1984, Tissue-specific activation of a cloned a-fetoprotein gene during differentiation of a transfected embryonal carcinoma cell line, Nature (London) 310: 562–567.Google Scholar
  89. Segal, S., and Khoury, G., 1979, Differentiation as a requirement for SV40 gene expression in F9 embryonal carcinoma cells, Proc. Natl. Acad. Sci. U.S.A. 76: 5611–5615.PubMedGoogle Scholar
  90. Segal, S., Levine, A. J., and Khoury, G., 1980, Evidence for non-spliced SV40 RNA in undifferentiated murine teratocarcinoma stem cells, Nature (London) 20: 335–337.Google Scholar
  91. Seiler-Tuyns, A., Eldridge, J. D., and Paterson, B. M., 1984, Expression and regulation of chicken actin genes introduced into mouse myogenic and nonmyogenic cells, Proc. Natl. Acad. Sci. U.S.A. 81: 2980–2984.PubMedGoogle Scholar
  92. Sekikawa, K., and Levine, A. J., 1981, Isolation and characterization of polyoma host mouse mutants that replicate in multipotential embryonal carcinoma cells, Proc. Natl. Acad. Sci. U.S.A. 78: 110–1104.Google Scholar
  93. Shani, M., 1985, Tissue-specific expression of rat myosin light-chain 2 gene in transgenic mice, Nature (London) 314: 283–286.Google Scholar
  94. Shen-Ong, G. L. C., Keath, E. J., Piccoli, S. P., and Cole, M. D., 1982, Novel myc oncogene RNA from abortive immunoglobulin-gene recombination in mouse plasmacytomas, Cell 31: 443–452.PubMedGoogle Scholar
  95. Small, J. A., Blair, D. G., Showalter, S. D., and Scangos, G. A., 1985, Analysis of a transgenic mouse containing SV40 and v-myc sequences, Mol. Cell. Biol. 5: 642–648.PubMedGoogle Scholar
  96. Sorge, J., Cutting, A. E., Erdman, V. D., and Gautsch, J. W., 1984, Integration-specific retrovirus expression in embryonal carcinoma cells, Proc. Natl. Acad. Sci. U.S.A. 81: 6627–6632.PubMedGoogle Scholar
  97. Spandidos, D. A., and Wilkie, N. M., 1984, Malignant transformation of early passage rodent cells by a single mutated human oncogene, Nature (London) 310: 469–475.Google Scholar
  98. Stanton, L. W., Watt, R., and Marcu, K. B., 1983, Translocation, breakage and truncated transcripts of c-myc oncogene in murine plasmacytomas, Nature (London) 303: 401–406.Google Scholar
  99. Stewart, C. L., Stuhlman, H., Jähner, D., and Jaenisch, R., 1982, De novo methylation, expression and infectivity of retroviral genomes introduced into embryonal carcinoma cells, Proc. Natl. Acad. Sci. U.S.A. 79: 4098–4102.Google Scholar
  100. Stewart, T. A., Wagner, E. F., and Mintz, B., 1982, Human 3-globin gene sequences injected into mouse eggs, retained in adults, and transmitted to progeny, Science 217: 1046–1048.Google Scholar
  101. Stewart, T. A., Pattengale, P. K., and Leder, P., 1984, Spontaneous mammary adenocarcinomas in transgenic mice that carry and express MTV/myc fusion genes, Cell 38: 627–637.PubMedGoogle Scholar
  102. Storb, U., O’Brien, R. L., McMullen, M. D., Gollahon, K. A., and Brinster, R. L., 1984, High expression of cloned immunoglobulin K gene in transgenic mice is restricted to B lymphocytes, Nature (London) 310: 238–241.Google Scholar
  103. Swanson, L. W., Simmons, D. M., Arriza, J., Hammer, R., Brinster, R., Rosenfeld, M. G., and Evans, R. M., 1985, Novel developmental specificity in the nervous system of transgenic animals expressing growth hormone fusion genes, Nature (London) 317: 363–366.Google Scholar
  104. Swartzendruber, E. C., and Lehmann, J. M., 1975, Neoplastic differentiation: Interaction of SV40 and polyoma virus with murine teratocarcinoma cells in vitro, J. Cell Physiol. 85: 179–180.PubMedGoogle Scholar
  105. Swift, G. H., Hammer, R. E., McDonald, R. J., and Brinster, R. L., 1984, Tissue-specific expression of the rat pancreatic elastase I gene in transgenic mice, Cell 38: 639–646.PubMedGoogle Scholar
  106. Taub, R., Kirsch, I., Morton, C., Lenoir, G., Swan, D., Tronick, S., Aronson, S., and Leder, P., 1982, Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells, Proc. Natl. Acad. Sci. U.S.A. 79: 7837–7841.PubMedGoogle Scholar
  107. Teich, N. M., Weiss, R. A., Martin, G. R., and Lowy, D. R., 1977, Virus infection of murine teratocarcinoma stem cell lines, Cell 12: 973–982.PubMedGoogle Scholar
  108. Tilghman, S. M., 1985, The structure and regulation of the a-fetoprotein and albumin genes, in: Oxford Surveys in Eukaryotic Genes, Vol. 2. ( N. Maclean, ed.), Oxford University Press, Oxford, p. 160.Google Scholar
  109. Tonegawa, S., 1983, Somatic generation of antibody diversity, Nature 302: 575–581.PubMedGoogle Scholar
  110. Tooze, J. (ed.), 1981, Molecular Biology of Tumor Viruses, 2nd ed., Part 2, Cold Spring Harbor Press, Cold Spring Harbor, New York.Google Scholar
  111. Townes, T. M., Lingrel, J. B., Chen, H. Y., Brinster, R. L., and Palmiter, R. D., 1985, ErythroidGoogle Scholar
  112. specific expression of human ß-globin genes in transgenic mice, EMBO J. 4:1715–1723.Google Scholar
  113. Van Dyke, T., Finlay, C., and Levine, A. J., 1985, A comparison of several lines of transgenicGoogle Scholar
  114. mice containing the SV40 early genes, Cold Spring Harbor Symp. Quant. Biol. 50:671–678.Google Scholar
  115. Vande Woude, G., Levine, A. J., Topp, W. C., and Watson, J. D. (eds.), 1984, Oncogenes and Viral Genes, Cold Spring Harbor Press, Cold Spring Harbor, New York.Google Scholar
  116. Vasseur, M., Kress, C., Montreau, N., and Blangy, D., 1980, Isolation and characterization of polyoma virus mutants able to develop in multipotent murine embryonal carcinoma cells, Proc. Natl. Acad. Sci. U.S.A. 77: 1068–1072.PubMedGoogle Scholar
  117. Wagner, E. F., and Stewart, C. L., 1986, Integration and expression of genes introduced into mouse embryos, in: Experimental Approaches to Mammalian Embryonic Development (J. Rossant and R. Pederson, eds.) Cambridge University Press, Cambridge, England (in press).Google Scholar
  118. Wagner, E. F., Covarrubias, L., Stewart, T. A., and Mintz, B., 1983, Prenatal lethalities in mice homozygous for human growth hormone gene sequences integrated in the germ line, Cell 35: 647–655.PubMedGoogle Scholar
  119. Walker, M. C., Edlund, T., Boulet, A. M., and Rutter, W. J., 1985, Cell-specific expression controlled by the 5’-flanking region of insulin and chymotrypsin genes, Nature (London) 306: 557–561.Google Scholar
  120. Weaver, D., Costantini, F., Imanishi-Kari, T., and Baltimore, D., 1985 A transgenic immunoglobulin Mu gene prevents rearrangement of endogenous genes, Cell 42: 117–127.PubMedGoogle Scholar
  121. Weiss, R., Teich, N., Varmus, H., and Coffin, J. (eds.), 1982, RNA Tumor Viruses, 2nd ed., Cold Spring Harbor Press, Cold Spring Harbor, New York.Google Scholar
  122. Westphal, H., Overbeek, P. A., Khillan, J. S., Chepelinsky, A. B., Schmidt, A., Mahon, K. A., Bernstein, K. E., Piatigorsky, J., and de Crombrugghe, B., 1985, Promoter sequences of murine aA crystallin, murine a2(1) collagen or avian sarcoma virus genes linked to the bacterial CAT gene direct tissue specific patterns of CAT expression in transgenic mice, in: Cold Spring Harbor Symp. Quant. Biol. 50: 411–416.Google Scholar
  123. Willison, K., Babinet, C., Boccara, M., and Kelly, F., 1983, Infection of preimplantation mouse embryos with simian virus 40, in: Cold Spring Harbor Monographs on Cell Proliferation, Vol. 10 ( L. M. Silver, G. F. Martin, and S. Strickland, eds.), pp. 307–317, Cold Spring Harbor Press, Cold Spring Harbor, New York.Google Scholar
  124. Wright, S., Rosenthal, A., Flavell, R., and Grosveld, F., 1984, DNA sequences required for regulated expression of ß-globin genes in murine erythroleukemia cells, Cell 38: 265–273.PubMedGoogle Scholar
  125. Yamamura, K., Kikutani, H., Foison, V., Clayton, L. K., Kimoto, M., Akira, S., Kashiwamura, S., Tonegawa, S., and Kishimoto, T., 1985, Functional expression of a microinjected Eg gene in C57BL/6 transgenic mice, Nature (London) 316: 67–69.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Shirley M. Tilghman
    • 1
  • Arnold J. Levine
    • 2
  1. 1.Institute for Cancer ResearchPhiladelphiaUSA
  2. 2.Department of Molecular BiologyPrinceton UniversityPrincetonUSA

Personalised recommendations