Gene Transfer pp 149-187 | Cite as

Retrovirus Vectors for Gene Transfer: Efficient Integration into and Expression of Exogenous DNA in Vertebrate Cell Genomes

  • Howard M. Temin


Retroviruses are animal viruses with an RNA genome that replicate through a DNA intermediate. The DNA intermediate, the provirus, is stably integrated into cellular DNA. (Alternatively, retroviruses can be considered the RNA form of cellular movable genetic elements that transpose through an extracellular RNA intermediate.) Because of this efficient integration and other properties to be discussed, retroviruses are considered the most likely vectors for use in human gene therapy (Wyngaarden, 1985).


Long Terminal Repeat Helper Cell Rous Sarcoma Virus Herpes Simplex Virus Thymidine Kinase Internal Promoter 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, W. F., 1984, Prospects for human gene therapy, Science 226: 401–409.PubMedGoogle Scholar
  2. Anderson, W. F., 1985, Human gene therapy: Scientific and ethical consideration, Recombinant DNA Tech. Bull. 8: 55–63.Google Scholar
  3. Anonymous, Human gene therapy: Background paper, U.S. Congress, Office of Technology Assessment, 1984.Google Scholar
  4. Bandyopadhyay, P. K., and Temin, H. M., 1984a, Expression from an internal aug codon of herpes simplex thymidine kinase gene inserted in a retrovirus vector, Mol. Cell. Biol. 4: 743–748.PubMedGoogle Scholar
  5. Bandyopadhyay, P. K., and Temin, H. M., 1984b, Expression of complete chicken thymidine kinase gene inserted in a retrovirus vector, Mol. Cell. Biol. 4: 749–754.PubMedGoogle Scholar
  6. Bandyopadhyay, P. K., Watanabe, S., and Temin, H. M., 1984, Recombination of transfectedGoogle Scholar
  7. DNAs in vertebrate cells in culture, Proc. Natl. Acad. Sci. U.S.A. 81:3476–3480.Google Scholar
  8. Battula, N., and Loeb, L., 1974, The infidelity of avian myeloblastosis virus DNA polymerase in polynucleotide replication, J. Biol. Chem. 249: 4086–4093.PubMedGoogle Scholar
  9. Berger, S. A., and Berstein, A., 1985, Characterization of a retrovirus shuttle vector capable of either proviral integration or extrachromosomal replication in mouse cells, Mol. Cell. Biol. 5: 305–312.PubMedGoogle Scholar
  10. Bestwick, R. K., Hankins, W. D., and Kabat, D., 1985, Roles of helper and defective retroviral genomes in murine erythroleukemia: Studies of spleen focus-forming virus in the absence of helper, J. Virol. 56: 660–664.PubMedGoogle Scholar
  11. Bishop, J. M., and Varmus, H., 1985, Function and origins of retroviral transforming genes, in: RNA Tumor Viruses, 2nd ed. ( R. Weiss, N. Teich, H. Varmus, and J. Coffin, eds.), pp. 249–356, Cold Spring Harbor Press, Cold Spring Harbor, New York.Google Scholar
  12. Boeke, J. D., Garfinkel, D. J., Styles, C. A., and Fink, G. R., 1985, Ty elements transpose through an RNA intermediate, Cell 40: 491–500.PubMedGoogle Scholar
  13. Cepko, C. L., Roberts, B. E., and Mulligan, R. C., 1984, Construction and applications of a highly transmissible murine retrovirus shuttle vector, Cell 37: 1053–1062.PubMedGoogle Scholar
  14. Chen, I. S. Y., and Temin, H. M., 1982, Substitution of 5’ helper virus sequences into non-rel portion of reticuloendotheliosis virus strain T suppresses transformation of chicken spleen cells, Cell 31: 111–120.PubMedGoogle Scholar
  15. Clark, S. P., Kaufhold, R., Chan, A., and Mak, T. W., 1985, Comparison of the transcriptional properties of the Friend and Moloney retrovirus long terminal repeats: Importance of tandem duplication and of the core enhancer sequence, Virology 144: 481–494.PubMedGoogle Scholar
  16. Coffin, J., 1985, Genome structure, in: Molecular Biology of Tumor Viruses, 2nd ed., RNA Tumor Viruses 2/Supplements and Appendixes ( R. Weiss, N. Teich, H. Varmus, and J. Coffin, eds.), pp. 1–37, Cold Spring Harbor Press, Cold Spring Harbor, New York.Google Scholar
  17. Coffin, J. M., Tsichlis, P. N., Barker, C. S., Voynow, S., and Robinson, H. L., 1980, Variation in avian retrovirus genomes, Ann. N. Y. Acad. Sci. 354: 410–425.PubMedGoogle Scholar
  18. Cone, R. D., and Mulligan, R. C., 1984, High-efficiency gene transfer into mammalian cells: Generation of helper-free recombinant retrovirus with broad mammalian host rnge, Proc. Natl. Acad. Sci. U.S.A. 81: 6349–6353.PubMedGoogle Scholar
  19. Copeland, N., Hutchison, K., and Jenkins, H., 1983, Excision of the DBA ecotropic provirus in dilute coat-color revertants of mice occurs by homologous recombination involving the viral LTRs, Cell 33: 379–387.PubMedGoogle Scholar
  20. Cullen, B. R., Lomedico, P. T., and Ju, G., 1984, Transcriptional interference in avian retroviruses-implications for the promoter insertion model of leukaemogenesis, Nature (London) 307: 241–245.Google Scholar
  21. Cullen, B. R., Raymond, K., and Ju, G., 1985, Transcriptional activity of avian retroviral long terminal repeats directly correlates with enhancer activity, J. Virol. 53: 515–521.PubMedGoogle Scholar
  22. Curran, T., Peters, G., Van Beveren, C., Teich, N. M., and Verma, I. M., 1982, FBJ murineGoogle Scholar
  23. osteosarcoma virus: Identification and molecular cloning of biologically active proviral DNA,J, Virol. 44: 674–682.Google Scholar
  24. Dick, J. E., Magli, M. C., Huszar, D., Phillips, R. A., Bernstein, A., 1985, Introduction of a selectable gene into primitive stem cells capable of long-term reconstitution of the hemopoietic system of W/Wv mice, Cell 42: 71–79.PubMedGoogle Scholar
  25. Donoghue, D. J., Anderson, C., Hunter, T., and Kaplan, P. L., 1984, Transmission of the polyoma virus middle T gene as the oncogene of a murine retrovirus, Nature (London) 308: 748–750.Google Scholar
  26. Dougherty, J., and Temin, H. M., 1986, Analysis of spleen necrosis virus-based retrovirus splicing vector and its variation (submitted to Mol. Cell. Biol.).Google Scholar
  27. Eglitis, M. A., Kantoff, P., Gilboa, E., Anderson, W. F., 1985, Gene expression in mice after high efficiency retroviral-mediated gene transfer, Science 230: 1395–1398.PubMedGoogle Scholar
  28. Eglitis, M. A., Kantoff, P., Gilboa, E., Anderson, W. F., 1985, Gene expression in mice after high efficiency retroviral-mediated gene transfer, Science 230: 1395–1398.PubMedGoogle Scholar
  29. Emerman, M., and Temin, H. M., 1984a, High frequency deletion in recovered retrovirus vectors containing exogenous DNA with promoters, J. Virol. 50: 42–49.Google Scholar
  30. Emerman, M., and Temin, H. M., 1984b, Genes with promoters in retrovirus vectors can be independently suppressed by an epigenetic mechanism, Cell 39: 459–467.Google Scholar
  31. Emerman, M., and Temin, H. M., 1986, Quantitative analysis of gene suppression in integrated retrovirus vectors, Mol. Cell. Biol. 6: 792–800.PubMedGoogle Scholar
  32. Episkopou, V., Murphy, A. J. M., and Efstratiadis, A., 1984, Cell-specified expression of a selectable hybrid gene, Proc. Natl. Acad. Sci. U.S.A. 81: 4657–4661.PubMedGoogle Scholar
  33. Estis, L. F., and Temin, H. M., 1979, Suppression of multiplication of avian sarcoma virus by rapid spread of transformation-defective virus of the same subgroup, J. Virol. 31: 389–397.PubMedGoogle Scholar
  34. Felber, B. K., Paskalis, H., Kleinman-Ewing, C., Wong-Staal, F., and Pavlakis, G. N., 1985, The pX protein of HTLV-I is a transcriptional activator of its long terminal repeats, Science 229: 675–679.PubMedGoogle Scholar
  35. Fischer, H. D., Dodgson, J. B., Hughes, S., and Engel, J. D., 1984, An unusual 5’ splice sequence is efficiently utilized in vivo, Proc. Natl. Acad. Sci. U.S.A. 81: 2733–2737.PubMedGoogle Scholar
  36. Foster, D. A., and Hanafusa, H., 1983, A fps gene without gag gene sequences transforms cells in culture and induces tumors in chickens, J. Virol. 48: 744–751.PubMedGoogle Scholar
  37. Friedman, R. L., 1985, Expression of human adenosine deaminase using a transmissible murine retrovirus vector system, Proc. Natl. Acad. Sci. U.S.A. 82: 703–703.PubMedGoogle Scholar
  38. Hammer, R. E., Pursel, V. G., Rexroad, C. E., Jr., Wall, R. J., Bott, D. J., Ebert, K. M., Palmiter, R. D., and Brinster, R. L., 1985, Production of transgenic rabbits, sheep and pigs by microinjection, Nature (London) 315: 680–683.Google Scholar
  39. Hannink, M., and Donoghue, D. J., 1984, Requirement for a signal sequence in biological expression of the v-sis oncogene, Science 226: 1197–1199.PubMedGoogle Scholar
  40. Harbers, K., Kuehn, M., Delius, H., and Jaenisch, R., 1984, Insertion of retrovirus into the first intron of (alpha)1(I) collagen gene leads to embryonic lethal mutation in mice, Proc. Natl. Acad. Sci. U.S.A. 81: 1504–1508.PubMedGoogle Scholar
  41. Harris, J. D., Blum, H., Scott, J., Traynor, B., Ventura, P., and Haase, A., 1984, Slow virus visna: Reproduction in vitro of virus from extrachromosomal DNA, Proc. Natl. Acad. Sci. U.S.A. 81: 7212–7215.Google Scholar
  42. Hawley, R. G., Shulman, M. J., Murialdo, H., Gibson, D. M., and Hozumi, N., 1982, Mutant immunoglobulin genes have repetitive DNA elements inserted into their intervening sequences, Proc. Natl. Acad. Sci. U.S.A. 79: 7425–7429.PubMedGoogle Scholar
  43. Hayashida, H., Toh, H., Kikuno, R., and Miyata, T., 1985, Evolution of influenza genes, Mol. Biol. Evol. 2: 289–303.PubMedGoogle Scholar
  44. Hellerman, J. G., Cone, R. C., Potts, J. T., Jr., Rich, A., Mulligan, R. C., and Kroneberg, H. M., 1984, Secretion of human parathyroid hormone from rat pituitary cells infected with a recombinant retrovirus encoding preparathyroid hormone, Proc. Natl. Acad. Sci. U.S.A. 81: 5340–5344.Google Scholar
  45. Holland, C. A., Hartley, J. W., Rowe, W. P., and Hopkins, N., 1985, At least four viral genes contribute to the leukemogenicity of murine retrovirus MCF 247 in AKR mice, J. Virol. 53: 158–165.PubMedGoogle Scholar
  46. Huszar, D., Balling, R., Kothary, R., Magli, M. C., Hozumi, N., Rossant, J., Bernstein, A., 1985, Insertion of a bacterial gene into the mouse germ line using an infectious retrovirus vector, Proc. Natl. Acad. Sci. U.S.A. 82: 8587–8591.PubMedGoogle Scholar
  47. Hwang, L.-H. S., and Gilboa, E., 1984, Expression of genes introduced into cells by retroviral infection is more efficient than that of genes introduced into cells by DNA transfection, J. Virol. 50: 417–424.PubMedGoogle Scholar
  48. Hwang, L.-H. S., Park, J., and Gilboa, E., 1984, Role of intron-containing sequences in formation of Moloney murine leukemia virus env mRNA, Mol. Cell. Biol. 4: 2289–2297.PubMedGoogle Scholar
  49. Iba, H., Takeya, T., Cross, F. R., Hanafusa, T., and Hanafusa, H., 1984, Rous sarcoma virus variants that carry the cellular src gene instead of the viral src gene cannot transform chicken embryo fibroblasts, Proc. Natl. Acad. Sci. U.S.A. 81: 4424–4428.PubMedGoogle Scholar
  50. Izant, J. G., and Weintraub, H., 1985, Constitutive and conditional suppression of exogenous and endogenous genes by anti-sense RNA, Science 229: 345–352.PubMedGoogle Scholar
  51. Jahner, D., Haase, K., Mulligan, R., Jaenisch, R., 1985, Insertion of the bacterial gpt gene into the germ line of mice by retroviral infection, Proc. Natl. Acad. Sci. U.S.A. 82: 69276931.Google Scholar
  52. Joyner, A. L., and Bernstein, A., 1983a, Retrovirus transduction: Generation of infectious retro-viruses expressing dominant and selectable genes associated with in vivo recombination and deletion events, Mol. Cell. Biol. 3: 2180–2190.PubMedGoogle Scholar
  53. Joyner, A. L., and Bernstein, A., 1983b, Retrovirus transduction: Segregation of the viral transforming function and the herpes simplex virus tk gene in infectious spleen focus-forming virus thymidine kinase vectors, Mol. Cell. Biol. 3: 2192–2202.Google Scholar
  54. Joyner, A., Keller, F., Phillips, R. A., and Bernstein, A., 1983, Retrovirus transfer of a bacterial gene into mouse haematopoietic progenitor cells, Nature (London) 305: 556–558.Google Scholar
  55. King, W., Patel, M. D., Lobel, L. I., Goff, S. P., and Nguyen-Huu, M. C., 1985, Insertion mutagenesis of embryonal carcinoma cells by retroviruses, Science 228: 554–558.Google Scholar
  56. Kleckner, N., Roth, J., and Botstein, D., 1977, Genetic engineering in vivo using translocatable drug-resistance elements: New methods in bacterial genetics, J. Mol. Biol. 116: 125–159.PubMedGoogle Scholar
  57. Kriegler, M., Perez, C. F., Hardy, C., and Botchan, M., 1984, Transformation mediated by the SV40 T antigens: Separation of the overlapping SV40 early genes with a retroviral vector, Cell 38: 483–491.PubMedGoogle Scholar
  58. Ledley, F. D., Grenett, H. E., McGinnis-Shelnutt, M., and Woo, S. L. C., 1986, Retroviralmediated gene transfer of human phenyalanine hydroxylase into NIH 3T3 and hepatoma cells, Proc. Natl. Acad. Sci. U.S.A. 83: 409–413.PubMedGoogle Scholar
  59. Lewis, S., Gifford, A., and Baltimore, D., 1984, Joining of V(kappa) to J(kappa) gene segments in a retroviral vector introduced into lymphoid cells, Nature (London) 308: 425–428.Google Scholar
  60. Lewis, S., Gifford, A., and Baltimore, D., 1985, DNA elements are asymmetrically joined during the site-specific recombination of kappa immunoglobulin genes, Science 228: 677–685.PubMedGoogle Scholar
  61. Lobel, L. I., Patel, M., King, W., Nguyen-Huu, M. C., and Goff, S. P., 1985, Construction and recovery of viable retroviral genomes carrying a bacterial suppressor transfer RNA gene, Science 228: 329–332.PubMedGoogle Scholar
  62. Mann, R., and Baltimore, D., 1985, Varying the position of a retrovirus packaging sequence results in the encapsidation of both unspliced and spliced RNAs, J. Virol. 54: 401–407.PubMedGoogle Scholar
  63. Mann, R., Mulligan, R. C., and Baltimore, D., 1983, Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus, Cell 33: 153–159.PubMedGoogle Scholar
  64. Miller, A. D., Jolly, D. J., Friedmann, T., and Verma, I. M., 1983, A transmissible retrovirus expressing human hypoxanthine phosphoribosyltransferase (HPRT): Gene transfer into cells obtained from humans deficient in HPRT, Proc. Natl. Acad. Sci. U.S.A. 80: 4709–4713.PubMedGoogle Scholar
  65. Miller, A. D., Eckner, R. J., Jolly, D. J., Friedman, T., and Verma, I., 1984a, Expression of a retrovirus encoding human HPRT in mice, Science 225: 630–632.PubMedGoogle Scholar
  66. Miller, A. D., Ong, E. S., Rosenfeld, M. G., Verma, I. M., and Evans, R. M., 1984b, Infectious and selectable retrovirus containing an inducible rat growth hormone minigene, Science 229: 993–998.Google Scholar
  67. Miller, A. D., Law, M.-F., and Verma, I. M., 1985, Generation of helper-free amphotropic retro-viruses that transduce a dominant-acting methotrexate-resistant dihydrofolate reductase gene, Mol. Cell. Biol. 5: 431–437.PubMedGoogle Scholar
  68. Miller, C. K., and Temin, H. M., 1983, High efficiency ligation and recombination of DNA fragments by vertebrate cells, Science 220: 606–609.PubMedGoogle Scholar
  69. Miller, C. K., and Temin, H. M., 1986, Insertion of several different DNAs in reticuloendotheliosis virus strain T suppresses transformation by reducing the amount of subgenomic mRNA, J. Virol. 58: 75–80.PubMedGoogle Scholar
  70. Mizutani, S., and Temin, H. M., 1976, Incorporation of noncomplementary nucleotides at high frequences by ribodeoxyvirus DNA polymerases and Escherichia coli DNA polymerase I, Biochemistry 15: 1510–1516.PubMedGoogle Scholar
  71. Mount, S. M., and Rubin, G. M., 1985, Complete nucleotide sequence of the Drosophila transposable element copia: Homology between copia and retroviral proteins, Mol. Cell. Biol. 5: 1630–1638.PubMedGoogle Scholar
  72. Norton, P. A., and Coffin, J. M., 1985, Bacterial 3-galactosidase as a marker of Rous sarcoma virus gene expression and replication, Mol. Cell. Biol. 5: 281–290.PubMedGoogle Scholar
  73. O’Rear, J. J., and Temin, H. M., 1982, Spontaneous changes in nucleotide sequence in proviruses of spleen necrosis virus, an avian retrovirus, Proc. Natl. Acad. Sci. U.S.A. 79: 1230–1234.PubMedGoogle Scholar
  74. O’Rear, J. J., Mizutani, S., Hoffman, G., Fiandt, M., and Temin, H. M., 1980, Infectious and non-infectious recombinant clones of the provirus of SNV differ in cellular DNA and are apparently the same in viral DNA, Cell 20: 423–430.PubMedGoogle Scholar
  75. Palacios, R., Steinmetz, M., 1985, IL3-dependent mouse clones that express B-220 surface antigen, contain Ig genes in germ-line configuration, and generate B lymphocytes in vivo, Cell 41: 727–734.PubMedGoogle Scholar
  76. Panganiban, A. T., 1985, Retroviral DNA integration, Cell 42: 5–6.PubMedGoogle Scholar
  77. Panganiban, A. T., and Temin, H. M., 1983, The terminal nucleotides of retrovirus DNA are required for integration but not for virus production, Nature (London) 306: 155–160.Google Scholar
  78. Perkins, A. S., Kirschmeier, P. J., Gatloni-Celli, S., and Weinstein, I. B., 1983, Design of retrovirusderived vector for expression and transduction of exogenous genes in mammalian cells, Mol. Cell. Biol. 3:1123–1132.Google Scholar
  79. Quintrell, N., Hughes, S. H., Varmus, H. E., and Bishop, J. M., 1980, Structure of viral DNA and RNA in mammalian cells infected with avian sarcoma virus, J. Mol. Biol. 143: 363–393.PubMedGoogle Scholar
  80. Reik, W., Weihar, H., and Jaenisch, R., 1985, Replication-competent Moloney murine leukemia virus carrying a bacterial suppressor tRNA gene: Selective cloning of proviral and flanking host sequences, Proc. Natl. Acad. Sci. U.S.A. 82: 1141–1145.PubMedGoogle Scholar
  81. Rubenstein, J. L. R., Nicolas, J.-F., and Jacob, F., 1984, Construction of a retrovirus capable of transducing and expressing genes in multipotential embryonic cells, Proc. Natl. Acad. Sci. U.S.A. 81: 7137–7140.PubMedGoogle Scholar
  82. Rubenstein, J. L. R., Nicolas, J.-F., Jacob, F., 1986, Introduction of genes ino preimplantation mouse embryos by use of a defective recombinant retrovirus, Proc. Natl. Acad. Sci. U.S.A. 83: 366–368.PubMedGoogle Scholar
  83. Rubin, G. M., and Spradling, A. C., 1982, Genetic transformation of Drosophila with transposable element vectors, Science 218: 348–353.PubMedGoogle Scholar
  84. Seliger, B., Kolleck, R., Stocking, C., Franz, T., Ostertag, W., 1986, Viral transfer, transcription, and rescue of a selective myeloproliferative sarcoma virus in embryonal cell lines: Expression of the mos oncogene, Mol. Cell. Biol. 6: 286–293.PubMedGoogle Scholar
  85. Shimotohno, K., and Temin, H. M., 1981, Formation of infectious progeny virus after insertion of herpes simplex thymidine kinase gene into DNA of an avian retrovirus, Cell 26: 67–77.PubMedGoogle Scholar
  86. Shimotohno, K., and Temin, H. M., 1982a, Loss of intervening sequences in genomic mouse a-globin DNA inserted in an infectious retrovirus vector, Nature (London) 299: 265–268.Google Scholar
  87. Shimotohno, K., and Temin, H. M., 1982b, Spontaneous variation and synthesis in the U3 region of the long terminal repeat of an avian retrovirus, J. Virol. 41: 163–171.PubMedGoogle Scholar
  88. Sorge, J., and Hughes, S. H., 1982, Splicing of intervening sequences introduced into an infectious retroviral vector, J. Mol. Appl. Genet. 1: 547–559.PubMedGoogle Scholar
  89. Sorge, J., Cutting, A. E., Erdman, V. D., and Gautsch, J. W., 1984a, Integration-specific retrovirus expression in embryonal carcinoma cells, Proc. Natl. Acad. Sci. U.S.A. 81: 6627–6631.PubMedGoogle Scholar
  90. Sorge, J., Wright, D., Erdman, V. D., and Cutting, A. E., 1984b, Amphotropic retrovirus vector system for human cell gene transfer, Mol. Cell. Biol. 4: 1730–1737.PubMedGoogle Scholar
  91. Stuhlman, H., Cone, R., Mulligan, R. C., and Jaenisch, R., 1984, Introduction of a selectable gene into different animal tissue by a retrovirus recombinant vector, Proc. Natl. Acad. Sci. U.S.A. 81: 7151–7155.Google Scholar
  92. Sylla, B., and Temin, H. M., 1986, Activation of oncogenicity of c-rel proto-oncogene (submitted to Mol. Cel. Biol.).Google Scholar
  93. Tabin, C. J., Hoffman, J. W., Goff, S. P., and Weinberg, R. A., 1982, Adaptation of a retrovirus as a eucaryotic vector transmissing the herpes simplex virus thymidine kinase gene, Mol. Cell. Biol. 2: 426–436.PubMedGoogle Scholar
  94. Takeda, S.-I., Naito, T., Hama, K., Noma, T., and Honjo, T., 1985, Construction of chimaeric processed immunoglobulin genes containing mouse variable and human constant region sequences, Nature (London) 314: 452–454.Google Scholar
  95. Taketo, M., Gilboa, E., and Sherman, M. I., 1985, Isolation of embryonal carcinoma cell lines that express integrated recombinant genes flanked by the Moloney murine leukemia virus long terminal repeats, Proc. Natl. Acad. Sci. U.S.A. 82: 2422–2426.PubMedGoogle Scholar
  96. Takeya, R., Hanafusa, H., Junghans, R. P., Ju, G., and Skalka, A. M., 1981, Comparison between the viral transforming gene (src) of recovered avian sarcoma virus and its cellular homolog, Mol. Cell. Biol. 1:1024–1037.Google Scholar
  97. Tarpley, W. G., and Temin, H. M., 1984, The location of v-src in a retrovirus vector determines whether the virus is toxic or transforming, Mol. Cell. Biol. 44: 2653–2660.PubMedGoogle Scholar
  98. Temin, H. M., 1981, Structure, variation, and synthesis of retrovirus long terminal repeat, Cell 27: 1–3.PubMedGoogle Scholar
  99. Temin, H. M., 1982, Function of the retrovirus long terminal repeat, Cell 28: 3–5.PubMedGoogle Scholar
  100. Temin, H. M., 1985a, Developments in molecular virology: Cloning of retrovirus DNA in bacteria and cloning of other DNA in retroviruses, in: Recombinant DNA Research and Virus ( Y. Becker, ed.), Martinus Nijhoff, Boston.Google Scholar
  101. Temin, H. M., 1985b, Reverse transcription in the eukaryotic genome: Retroviruses, pararetroviruses, retrotransposons, and retrotranscripts, Mol. Biol. Evol. 2: 455–468.PubMedGoogle Scholar
  102. Temin, N. M., and Miller, C. K., 1984, Insertion of oncogenes into retrovirus vectors, Cancer Survey 3 (2): 229–246.Google Scholar
  103. Valerico, D., Duyvesteyn, M. G. C., and van der Eb, A. J., 1985, Introduction of sequences encoding functional human adenosine deaminase into mouse cells using a retroviral shuttle system, Gene 34: 163–168.Google Scholar
  104. Varmus, H. E., 1982, Form and function of retroviral proviruses, Science 216: 812–820.PubMedGoogle Scholar
  105. Varmus, H. E., Quintrell, N., and Oritz, S., 1981, Retroviruses as mutagens: Insertion and ex-cision of a nontransforming provirus alter expression of a resident transforming provirus, Cell 25: 23–36.PubMedGoogle Scholar
  106. Wachsman, W., Golde, D. W., Temple, P. A., Orr, E. C., Clark, S. C., and Chen, I. S. Y., 1985, HTLV x-gene product: Requirement for the env methionine initiation codon, Science 228: 1534–1537.PubMedGoogle Scholar
  107. Wagner, E. F., Vanek, M., and Vennstrom, B., 1985, Transfer of genes into embryonal carcinoma cells by retrovirus infection: Efficient expression from an internal promoter, EMBO J. 4: 663–666.PubMedGoogle Scholar
  108. Watanabe, S., and Temin, H. M., 1982, Encapsidation sequences for spleen necrosis virus, an avian retrovirus, are between the 5’ long terminal repeat and the start of the gag gene, Proc. Natl. Acad. Sci. U.S.A. 79: 5986–5990.PubMedGoogle Scholar
  109. Watanabe, S., and Temin, H. M., 1983, Construction of a helper cell line for avian reticuloendotheliosis virus cloning vectors, Mol. Cell. Biol. 3: 2241–2249.PubMedGoogle Scholar
  110. Watanabe, S., Shimotohno, K., and Temin, H. M., 1984, Construction of a small retrovirus cloning vector and splicing of genomic mouse a-globin DNA inserted in this vector, in: Progress in Cancer Research Therapy, Vol. 30 ( M. L. Pearson and N. L. Sternberg, eds.), pp. 97–103, Raven Press, New York.Google Scholar
  111. Weber, F., and Schaffner, W., 1985, Enhancer activity correlates with the oncogenic potential of avian retroviruses, EMBO J. 4: 949–956.PubMedGoogle Scholar
  112. Wei, C., Gibson, M., Spear, P. G., and Scolnick, E. M., 1981, Construction and isolation of transmissible retrovirus containing the src gene of Harvey murine sarcoma virus and the thymidine kinase gene of herpes simplex virus type 1, J. Virol. 39: 935–944.PubMedGoogle Scholar
  113. Weis, J. H., Nelson, D. L., Przyborki, M. J., Chaplin, D. D., Mulligan, R. C., Housman, D. E., and Seidman, J. G., 1984, Eukaryotic chromosome transfer: Linkage of the murine major histocompatibility complex to an inserted dominant selectable marker, Proc. Natl. Acad. Sci. U.S.A. 81: 4879–4883.PubMedGoogle Scholar
  114. Weiss, R., Teich, N., Varmus, H., and Coffin, J., (eds.), 1985, Molecular Biology of Tumor Viruses, RNA Tumor Viruses, 2nd ed., 2/Supplements and Appendixes, Cold Spring Harbor Press, Cold Spring Harbor, New York.Google Scholar
  115. Wilhelmsen, K. C., Tarpley, W. G., and Temin, H. M., 1984, Identification of some of the parameters governing transformation by oncogenes in retroviruses, in: Cancer Cells (G. F. Vande Woude, A. J. Levine, W. C. Topp, and J. D. Watson, eds.), pp. 303–308, Cold Spring Harbor Press, Cold Spring Harbor, New York.Google Scholar
  116. Williams, D. A., Lemischka, I. R., Nathan, D. G., and Mulligan, R. C., 1984, Introduction of new genetic material into pluripotent haemopoietic stem cells of the mouse, Nature (London) 310: 476–483.Google Scholar
  117. Willis, R. C., Jolly, D. J., Miller, A. D., Plent, M. M., Esty, A. C., Anderson, P. J., Chang, H.-C., Jones, O. W., Seegmiller, J. E., and Friedman, T., 1984, Partial phenotypic correction of human Lesch—Nyhan (hypoxanthine-guanine phosphoribosyltransferase-deficient) lymphoblasts with a transmissible retrovirus vector, J. Biol. Chem. 259: 7842–7849.PubMedGoogle Scholar
  118. Wolff, L., and Ruscetti, S., 1985, Malignant transformation of erythroid cells in vivo by introduction of a nonreplicating retrovirus vector, Science 228: 1549–1552.PubMedGoogle Scholar
  119. Wyngaarden, J., 1985, Points to consider in the design and submission of human somatic-cell gene therapy protocols, National Institutes of Health, Fed. Reg. 50: 2940–2944.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Howard M. Temin
    • 1
  1. 1.McArdle Laboratory for Cancer ResearchUniversity of WisconsinMadisonUSA

Personalised recommendations