Microcell Fusion and Mammalian Gene Transfer

  • Tracy G. Lugo
  • R. E. K. Fournier


Microcell-mediated chromosome transfer (Fournier and Ruddle, 1977a; Fournier, 1981) is a parasexual genetic technique that can be used to transfer single, intact chromosomes from one mammalian cell to another. As such, microcell fusion is not a gene-transfer method in the usual sense of the term; rather, it is an approach for the construction of simple hybrid cells with precisely defined genotypes. Microcell hybrids have proved to be valuable tools for mammalian gene mapping, for genetic analyses of complex cellular phenotypes, and, in conjunction with other gene-transfer methods, for genetic manipulation of specific chromosomes and chromosomal regions.


Mouse Chromosome Recipient Cell Hybrid Clone Tyrosine Aminotransferase Donor Chromosome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Athwal, R. S., Smarsh, M., Searle, B. M., and Deo, S. S., 1985, Integration of a dominant selectable marker into human chromosomes and transfer of marked chromosomes to mouse cells by microcell fusion, Somat. Cell Mol. Genet. 11: 177–187.PubMedCrossRefGoogle Scholar
  2. Cassio, D., Weiss, M. C., Ott, M. O., Sala-Trepat, J., Fries, J., and Erdos, T., 1981, Expression of the albumin gene in rat hepatoma cells and their dedifferentiated variants, Cell 27: 351–358.PubMedCrossRefGoogle Scholar
  3. Cepko, C. L., Roberts, B. E., and Mulligan, R. C., 1984, Construction and applications of a highly transmissible murine retrovirus shuttle vector, Cell 37: 1053–1062.PubMedCrossRefGoogle Scholar
  4. Cirullo, R. E., Dana, S., and Wasmuth, J. J., 1983, Efficient procedure for transferring specific genes into Chinese hamster cell mutants: Interspecific transfer of the human genes encoding leucyl-and asparaginyl-tRNA synthetases, Mol. Cell. Biol. 3: 892–902.PubMedGoogle Scholar
  5. Colbere-Garapin, F., Horodniceanu, F., Kourilski, P., and Garapin, A.-C., 1981, A new dominant hybrid selective marker for higher eukaryotic cells, J. Mol. Biol. 150: 1–14.PubMedCrossRefGoogle Scholar
  6. Cone, R. D., and Mulligan, R. C., 1984, High-efficiency gene transfer into mammalian cells: Generation of helper-free recombinant retrovirus with broad mammalian host range, Proc. Natl. Acad. Sci. U.S.A. 81: 6349–6353.PubMedCrossRefGoogle Scholar
  7. Davidson, R. L., 1974, Gene expression in somatic cell hybrids, Annu. Rev. Genet. 8: 195–218.PubMedCrossRefGoogle Scholar
  8. Davidson, R. L., Ephrussi, B., and Yamamoto, K., 1966, Regulation of pigment synthesis in mammalian cells as studied by somatic hybridization, Proc. Natl. Acad. Sci. U.S.A. 56: 1437–1440.PubMedCrossRefGoogle Scholar
  9. Davis, F. M., and Adelberg, E. A., 1973, Use of somatic cell hybrids for analysis of the differentiated state, Bacteriol. Rev. 37: 197–214.PubMedGoogle Scholar
  10. Ege, T., and Ringertz, N. R., 1974, Preparation of microcells by enucleation of micronucleate cells, Exp. Cell Res. 87: 378–382.PubMedCrossRefGoogle Scholar
  11. Fournier, R. E. K., 1981, A general high-efficiency procedure for production of microcell hybrids, Proc. Natl. Acad. Sci. U.S.A. 78: 6349–6353.PubMedCrossRefGoogle Scholar
  12. Fournier, R. E. K., 1982, Microcell-mediated chromosome transfer, in: Techniques in Somatic Cell Genetics ( J. Shay, ed.), pp. 309–327, Plenum Press, New York.Google Scholar
  13. Fournier, R. E. K., and Frelinger, J. A., 1982, Construction of microcell hybrid clones containing specific mouse chromosomes: Application to autosomes 8 and 17, Mol. Cell. Biol. 2: 526–534.PubMedGoogle Scholar
  14. Fournier, R. E. K., and Moran, R. G., 1983, Complementation mapping in microcell hybrids: Localization of Fpgs and Ak-1 on Mus musculus chromosome 2, Somat. Cell Genet. 9: 6984.CrossRefGoogle Scholar
  15. Fournier, R. E. K., and Ruddle, F. H., 1977a, Microcell-mediated transfer of murine chromosomes into mouse, Chinese hamster, and human somatic cells, Proc. Natl. Acad. Sci. U.S.A. 74: 319–323.PubMedCrossRefGoogle Scholar
  16. Fournier, R. E. K., and Ruddle, F. H., 1977b, Stable association of the human transgenome and host murine chromosomes demonstrated with trispecific microcell hybrids, Proc. Natl. Acad. Sci. U.S.A. 74: 3937–3941.PubMedCrossRefGoogle Scholar
  17. Francke, U., Lalley, P. A., Moss, W., Ivy, J., and Minna, J. D., 1977, Gene mapping in Mus musculus by interspecific cell hybridization: Assignment of the genes for tripeptidase-1 to chromosome 10, dipeptidase-2 to chromosome 18, acid phosphatase-1 to chromosome 12, and adenylate kinase-1 to chromosome 2, Cytogenet. Cell Genet. 19: 57–84.PubMedCrossRefGoogle Scholar
  18. Friend, K. K., Chen, S., and Ruddle, F. H., 1976, Differential staining of interspecific chromosomes in somatic cell hybrids by alkaline Giemsa stain, Somat. Cell Genet. 2: 183–188.PubMedCrossRefGoogle Scholar
  19. Goss, S. J., and Harris, H., 1975, New method for mapping genes in human chromosomes, Nature (London) 255: 680–684.CrossRefGoogle Scholar
  20. Kahn, C. R., Bertolotti, R., Ninio, M., and Weiss, M. C., 1981, Short-lived cytoplasmic regulators of gene expression in cell hybrids, Nature (London) 290: 717–720.CrossRefGoogle Scholar
  21. Killary, A. M., and Fournier, R. E. K., 1984, A genetic analysis of extinction: Trans-dominant loci regulate expression of liver-specific traits in hepatoma hybrid cells, Cell 38: 523–534.PubMedCrossRefGoogle Scholar
  22. Kozak, C. A., Fournier, R. E. K., Leinwand, L. A., and Ruddle, F. H., 1979, Assignment of the gene governing cellular ouabain-resistance to Mus musculus chromosome 3 using human/mouse microcell hybrids, Biochem. Genet. 17: 23–34.PubMedCrossRefGoogle Scholar
  23. Landolph, J. R., and Fournier, R. E. K., 1983, Microcell-mediated transfer of carcinogen-induced ouabain resistance from C3H/10T1/2 Cl 8 mouse fibroblasts to human cells, Mutat. Res. 107: 447–463.PubMedCrossRefGoogle Scholar
  24. Lem, J., and Fournier, R. E. K., 1985, Assignment of the gene encoding cytosolic phosphoenolpyruvate carboxykinase (GTP) to Mus musculus chromosome 2, Somat. Cell Mol. Genet. 11: 633–638.PubMedCrossRefGoogle Scholar
  25. Lem, J., and Fournier, R. E. K., 1985, Assignment of the gene encoding cytosolic phosphoenolpyruvate carboxykinase (GTP) to Mus musculus chromosome 2, Somat. Cell Mol. Genet. 11: 633–638.PubMedCrossRefGoogle Scholar
  26. Mann, R., Mulligan, R. C., and Baltimore, D., 1983, Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus, Cell 33: 153–159.PubMedCrossRefGoogle Scholar
  27. McNeill, C. A., and Brown, R. L., 1980, Genetic manipulation by means of microcell-mediated transfer of normal human chromosomes into recipient mouse cells, Proc. Natl. Acad. Sci. U.S.A. 77: 5394–5398.PubMedCrossRefGoogle Scholar
  28. Miller, A. D., Law, M.-F., and Verma, I. M., 1985, Generation of helper-free amphotropic retro-viruses that transduce a dominant-acting, methotrexate-resistant dihydrofolate reductase gene, Mol. Cell. Biol. 5: 431–437.Google Scholar
  29. Mulligan, R. C., and Berg, P., 1981, Selection for animal cells that express the Escherichia coli gene coding for xanthine-guanine phosphoribosyltransferase, Proc. Natl. Acad. Sci. U.S.A. 78:2072–2076.Google Scholar
  30. Orkin, S. H., Harosi, F. J., and Leder, P., 1975, Differentiation in erythroleukemia cells and their somatic hybrids, Proc. Natl. Acad. Sci. U.S.A. 72: 98–102.PubMedCrossRefGoogle Scholar
  31. Peterson, T. C., Killary, A. M., and Fournier, R. E. K., 1985, Chromosomal assignment and trans regulation of the tyrosine aminotransferase gene in hepatoma hybrid cells, Mol. Cell. Biol. 5:2491–2494.Google Scholar
  32. Phillips, S. G., and Phillips, D. M., 1969, Sites of nucleolus production in cultured Chinese hamster cells, J. Cell Biol. 40: 248–268.PubMedCrossRefGoogle Scholar
  33. Potter, H., Wier, L., and Leder, P., 1984, Enhancer-dependent expression of human kappa immunoglobulin genes introduced into mouse pre-B lymphocytes by electroporation, Proc. Natl. Acad. Sci. U.S.A. 81: 7161–7165.PubMedCrossRefGoogle Scholar
  34. Ringertz, N. R., and Savage, R. E., 1976, Cell Hybrids, pp. 196–212, Academic Press, New York.Google Scholar
  35. Robins, D. M., Ripley, S., Henderson, A. S., and Axel, R., 1981, Transforming DNA integrates into the host chromosome, Cell 23: 29–39.PubMedCrossRefGoogle Scholar
  36. Ruddle, F. H., and Creagan, R. P., 1975, Parasexual approaches to the genetics of man, Annu. Rev. Genet. 9: 407–486.PubMedCrossRefGoogle Scholar
  37. Saxson, P. J., Srivatsan, E. S., Leipzig, G. V., Sameshima, J. H., and Stanbridge, E. J., 1985Google Scholar
  38. Selective transfer of individual human chromosomes to recipient cells, Mol. Cell Genet. 5:140–146.Google Scholar
  39. Sekiguchi, T., Shelton, K., and Ringertz, N. R., 1978, DNA content of microcells prepared from rat kangaroo and mouse cells, Exp. Cell Res. 113: 247–258.PubMedCrossRefGoogle Scholar
  40. Simonsen, C. C., and Levinson, A. D., 1983, Isolation and expression of an altered mouse dihydrofolate reductase cDNA, Proc. Natl. Acad. Sci. U.S.A. 80: 2495–2499.PubMedCrossRefGoogle Scholar
  41. Sparkes, R. S., and Weiss, M. C., 1973, Expression of differentiated functions in hepatoma cell hybrids: Alanine aminotransferase, Proc. Natl. Acad. Sci. U.S.A. 70: 377–381.PubMedCrossRefGoogle Scholar
  42. Thompson, E. B., and Gelehrter, T. D., 1971, Expression of tyrosine aminotransferase activity in somatic cell heterokaryons: Evidence for negative control of enzyme expression, Proc. Natl. Acad. Sci. U.S.A. 68: 2589–2593.PubMedCrossRefGoogle Scholar
  43. Tunnacliffe, A., Parkar, M., Povey, S., Bengtsson, B. O., Stanley, K., Solomon, E., and Goodfellow, P., 1983, Integration of Ecogpt and SV40 early region sequences into human chromosome 17: A dominant selection system in whole cell and microcell human-mouse hybrids, EMBO J. 2: 1577–1584.Google Scholar
  44. Weis, J. H., Nelson, D. L., Przyborski, M. J., Mulligan, R. C., Housman, D. E., and Seidman, J. G., 1984, Eukaryotic chromosome transfer: Linkage of the mutine major histocompatibility complex to an inserted dominant selectable marker, Proc. Natl. Acad. Sci. U.S.A. 81: 4879–4883.Google Scholar
  45. Weiss, M. C., and Chaplain, M., 1971, Expression of differentiated functions in hepatoma cell hybrids: Reappearance of tyrosine aminotransferase inducibility after the loss of chromosomes, Proc. Natl. Acad. Sci. U.S.A. 68: 3026–3030.PubMedCrossRefGoogle Scholar
  46. Weiss, M. C., Sparkes, R. S., and Bertolotti, R., 1975, Expression of differentiated functions in hepatoma cell hybrids. IX. Extinction and reexpression of liver-specific enzymes in rat hepatoma-Chinese hamster fibroblast hybrids, Somat. Cell Genet. 1: 27–40.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Tracy G. Lugo
    • 1
  • R. E. K. Fournier
    • 1
  1. 1.Department of Microbiology and the Comprehensive Cancer CenterUniversity of Southern California School of MedicineLos AngelesUSA

Personalised recommendations