Advertisement

Cell Hybridization and the 24 Human Gene Maps

  • Thomas B. Shows

Abstract

The transfer of genes is an ancient phenomenon in the biology and evolution of organisms, as is evidenced by a variety of microorganisms. In bacteria during their sexual reproductive phase, cell-to-cell transfer of single-stranded DNA has been demonstrated (Lederberg, 1947; Wollman et al., 1956). In addition, DNA isolated from one genotype could stably change the phenotype of another bacterium (Avery et al., 1944). Similarly, the infection of bacteria by a certain bacteriophage involves transfer of phage DNA into a bacterium and integration into the bacterial genome. When phage replication takes place, the phage genome sometimes acquires a bacterial gene that was closely linked to the inserted phage genome. Subsequent bacterial infections by this phage can transfer the bacterial gene to another bacterial genome (Zinder and Lederberg, 1952; Lennox, 1955). In the life cycle of fungi, the entire haploid genome is transferred by the formation of heterokaryons after fusion of hyphae from different genomes (Fincham, 1966). In eukaryotes, fertilization of an egg could be considered a form of gene transfer, since an entire haploid genome is transferred. Thus, there are biological mechanisms for cells to accept new genetic material and propagate it through cell division. Understanding the principles of gene transfer in mammals, especially Homo sapiens, will teach us much about genetic mechanisms, gene expression, cell growth and differentiation, gene mapping, mutagenesis, and both normal and abnormal human biology. This information promises to be essential for understanding and possibly treating disease.

Keywords

Gene Marker Human Chromosome Thymidine Kinase Cell Hybrid Congenital Adrenal Hyperplasia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, S., Bankier, A. T., Barren, B. G., deBruijn, M. H. L., Coulson, A. R., Drouin, J., Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, E., Schreier, P. H., Smith, A. J. H., Staden, R., and Young, I. G., 1981, Sequence and organization of the human mitochondrial genome, Nature (London) 290: 457–465.CrossRefGoogle Scholar
  2. Avery, O. T., MacLeod, C. M., and McCarty, M., 1944, Studies on the chemical nature of the substance inducing transformation of pneumococcal types: Induction of transformation by a deoxyribonucleic acid fraction isolated from pneumococcus type III, J. Exp. Med. 79: 137–158.PubMedCrossRefGoogle Scholar
  3. Berger, R., Bloomfield, C. D., and Sutherland, G. R., 1985, Report of the committee on chromosome rearrangements in neoplasia and on fragile sites, Cytogenet. Cell Genet. 40: 490–535.PubMedCrossRefGoogle Scholar
  4. Botstein, D., White, R. L., Skolnick, M., and Davis, R. W., 1980, Construction of genetic linkage map in man using restriction fragment length polymorphisms, Am. J. Hum. Genet. 32: 314–331.PubMedGoogle Scholar
  5. Conneally, P. M., and Rivas, M. L., 1980, Linkage analysis in man, in: Advances in Human Genetics, Vol. 10 ( H. Harris and K. Hirschhorn, eds.), pp. 209–266, Plenum Press, New York.Google Scholar
  6. Cook, P. J. L., and Hamerton, J. L., 1982, Report of the committee on the genetic constitution of chromosome 1, Cytogenet. Cell Genet. 32: 111–120.PubMedCrossRefGoogle Scholar
  7. Cox, D. R., and Gedde-Dahl, T., Jr., 1985, Report of the committee on the genetic constitution of chromosomes 13, 14, 15 and 16, Cytogenet. Cell Genet. 40: 206–241.PubMedCrossRefGoogle Scholar
  8. Creagan, R. P., and Ruddle, F. H., 1975, The clone panel: A systematic approach to gene mapping using interspecific somatic cell hybrids, Cytogenet. Cell Genet. 14: 282–286.PubMedCrossRefGoogle Scholar
  9. Croce, C. M., Koprowski, H., and Eagle, H., 1972, Effect of environmental pH on the efficiency of cellular hybridization, Proc. Natl. Acad. Sci. U.S.A. 69: 1953–1956.PubMedCrossRefGoogle Scholar
  10. Davidson, R. L., 1974, Gene expression in somatic cell hybrids, Annu. Rev. Genet. 8: 195–218.PubMedCrossRefGoogle Scholar
  11. Davidson, R. L., and Gerald, P. S., 1976, Improved techniques for the induction of mammalian cell hybridization by polyethylene glycol, Somat. Cell Genet. 2: 165–176.PubMedCrossRefGoogle Scholar
  12. Elsevier, S. M., Kucherlapati, R. S., Nichols, E. A., Creagan, R. P., Giles, R. E., Ruddle, F. H., Willecke, K., and McDougall, J. K., 1974, Assignment of the gene for galactokinase to human chromosome 17 and its regional localization to band q21–22, Nature (London) 251: 633–636.CrossRefGoogle Scholar
  13. Ephrussi, B., 1972, Hybridization of Somatic Cells, Princeton University Press, Princeton, New Jersey, 175 pp.Google Scholar
  14. Fincham, J. R. S., 1966, Genetic Complementation, pp. 3–9, W. A. Benjamin, New York.Google Scholar
  15. Goodfellow, P. N., Davies, K. E., and Ropers, H.-H., 1985, Report of the committee on the genetic constitution of the X and Y chromosomes, Cytogenet. Cell Genet. 40: 296–352.PubMedCrossRefGoogle Scholar
  16. Goss, S. J., and Harris, H., 1977a, Gene transfer by means of cell fusion I, J. Cell Sci. 25: 17–37.Google Scholar
  17. Goss, S. J., and Harris, H., 1977b, Gene transfer by means of cell fusion II, J. Cell Sci. 25: 39–58.Google Scholar
  18. Grzeschik, K.-H., and Kazazian, H. H., 1985, Report of the committee on the genetic constitution of chromosomes 10, 11 and 12 Cytogenet. Cell Genet. 40: 179–205.PubMedCrossRefGoogle Scholar
  19. Gusella, J., Varsanyi-Breiner, A., Kao, F.-T., Jones, C., Puck, T. T., Keys, C., Orkin, S., and Housman, D., 1979, Precise localization of human beta-globin gene complex on chromosome 11, Proc. Natl. Acad. Sci. U.S.A. 76: 5239–5243.PubMedCrossRefGoogle Scholar
  20. Hamden D. G., and Klinger, H. P. (eds.), 1985, ISCN (1985): An International System for Human Cytogenetic Nomenclature, published in collaboration with Cytogenetics and Cell Genetics, Karger, Basel; also in Birth Defects: Original Article Series21 (1), March of Dimes Birth Defects Foundation, New York (1985).Google Scholar
  21. Harper, M.E., and Saunders, G.F., 1981, Localization of single copy DNA sequences on G-banded human chromosomes by in situhybridization, Chromosoma 83: 431–439PubMedCrossRefGoogle Scholar
  22. Harris, H., and Hopkinson, D.A., 1976, Handbook of Enzyme Electrophoresis in Human Genetics, North-Holland, Amsterdam.Google Scholar
  23. Honey, N.K., Mueller, O.T., Little, L.E., Miller, A.L., and Shows, T.B., 1982, Mucolipidosis III is genetically heterogeneous, Proc. Natl. Acad. Sci. U.S.A. 79: 7420–7424.PubMedCrossRefGoogle Scholar
  24. Human Gene Mapping Workshop 8, 1985, Eighth International Workshop on Human Gene Mapping, Cyogenet. Cell Genet. 40:1–4.CrossRefGoogle Scholar
  25. Jeffreys, A. J., Craig, I. W., and Francke, U., 1979, Localization of the G-gamma, A-gamma, delta-, and beta-globin genes on the short arm of human chromosome 11, Nature (London) 281: 606–608.CrossRefGoogle Scholar
  26. Karig Hohmann, L., and Shows, T. B., 1979, Complementation of genetic disease: A velocity sedimentation procedure for the enrichment of heterokaryons, Somat. Cell Genet. 5: 1013–1029.CrossRefGoogle Scholar
  27. Kidd, K. K., and Gusella, J., 1985, Report of the committee on the genetic constitution of chromosomes 3 and 4, Cytogenet. Cell Genet. 40: 107–127.PubMedCrossRefGoogle Scholar
  28. Klebe, R. J., Chen, T. R., and Ruddle, F. H., 1970, Controlled production of proliferating somatic cell hybrids, J. Cell Biol. 45: 74–82.PubMedCrossRefGoogle Scholar
  29. Klobutcher, L. A., and Ruddle, F. H., 1979, Phenotype stabilization and integration of transferred material in chromosome mediated gene transfer, Nature (London) 280: 657–660.CrossRefGoogle Scholar
  30. Lalley, P. A., and McKusick, V. A., 1985, Report of the committee on comparative mapping, Cytogenet. Cell Genet. 40: 536–566.PubMedCrossRefGoogle Scholar
  31. Lamm, L. U., and Olaisen, B., 1985, Report of the committee on the genetic constitution of chromosomes 5 and 6, Cytogenet. Cell Genet. 40: 128–155.PubMedCrossRefGoogle Scholar
  32. Langhans, T., 1868, Uber Riesenzellen mit wandständigen Kernen in Tuberkeln an die fibrose Form des Tuberkels, Arch. Pathol. Anat. Physiol. Klin. Med. 42: 382–404.CrossRefGoogle Scholar
  33. Lederberg, J., 1947, Gene recombination and linked segregations in Escherichia coli, Genetics 32: 505–525.Google Scholar
  34. Lennox, E. S., 1955, Transduction of linked genetic characters of the host by bacteriophage PI, Virology 1: 190–206.PubMedCrossRefGoogle Scholar
  35. Littlefield, J. W., 1964, Selection of hybrids from matings of fibroblasts in vitroand their presumed recombinants, Science 145: 709–710.PubMedCrossRefGoogle Scholar
  36. McAlpine, P. J., Shows, T. B., Miller, R. L., and Pakstis, A. J., 1985, The 1985 catalog of mapped genes and report of the nomenclature committee, Cytogenet. Cell Genet. 40: 8–66.PubMedCrossRefGoogle Scholar
  37. McBride, O. W., and Ozer, H. L., 1973, Transfer of genetic information by purified chromosomes, Proc. Natl. Acad. Sci. U.S.A. 70: 1258–1262.PubMedCrossRefGoogle Scholar
  38. McKusick, V. A., 1982, Mendelian Inheritance in Man, 6th ed., Johns Hopkins University Press, Baltimore.Google Scholar
  39. Miller, C. L., and Ruddle, F. H., 1978, Cotransfer of human X-linked markers into murine somatic cells via isolated metaphase chromosomes, Proc. Natl. Acad. Sci. U.S.A. 75: 3346–3350.PubMedCrossRefGoogle Scholar
  40. Minna, J. D., Lalley, P. A., and Francke, U., 1976, Comparative mapping using somatic cell hybrids, In Vitro 12: 726–733.PubMedCrossRefGoogle Scholar
  41. Morton, C. C., Byers, M. G., Nakai, H., Bell, G. I., and Shows, T. B., 1986, Human genes for insulin-like growth factors I and II and epidermal growth factor are located on 12822-ßq24.1, 11p15, and 4q25 q27, respectively Cytogenet. Cell Genet. 41: 245–249.PubMedCrossRefGoogle Scholar
  42. Mueller, O. T., Honey, N. K., Little, L. E., Miller, A. L., and Shows, T. B., 1983, Mucolipidosis II and III: The genetic relationships between two disorders of lysosomal enzyme biosynthesis, J. Clin. Invest. 72: 1016–1023.PubMedCrossRefGoogle Scholar
  43. Naylor, S. L., Sakaguchi, A. Y., Shows, T. B., Law, M. L., Goeddel, D. V., and Gray, P. W., 1983, Human immune interferon gene is located on chromosome 12, J. Exp. Med. 57: 1020–1027.CrossRefGoogle Scholar
  44. Naylor, S., Lalouel, J.-M., and Shaw, D. J., 1985, Report of the committee on the genetic constitution of chromosomes 17, 18 and 19, Cytogenet. Cell Genet. 40: 242–267.PubMedCrossRefGoogle Scholar
  45. Okada, Y., and Tadokaro, J., 1963, The distribution of cell fusion capacity among cell strains or cells caused by HVJ, Exp. Cell Res. 32: 417–423.PubMedCrossRefGoogle Scholar
  46. Owerbach, D., Bell, G. I., Rutter, W. J., and Shows, T. B., 1980a, The insulin gene is located on chromosome 11 in humans, Nature (London) 286: 82–84.CrossRefGoogle Scholar
  47. Owerbach, D., Rutter, W. J., Martial, J. A., Baxter, J. D., and Shows, T. B., 1980b, Genes for growth hormone, chorionic somatomammotropin, and growth hormone-like gene on chromosome 17 in humans, Science 209: 289–292.CrossRefGoogle Scholar
  48. Poste, G., 1970, Virus-induced polykaryocytosis and the mechanism of cell fusion, Adv. Virus Res. 16: 303–356.PubMedCrossRefGoogle Scholar
  49. Povey, S., Morton, N. E., and Sherman, S. L., 1985, Report of the committee on the genetic constitution of chromosomes 1 and 2, Cytogenet. Cell Genet. 40: 67–106.PubMedCrossRefGoogle Scholar
  50. Puck, T. T., Marcus, P. T., and Cieciura, S. J., 1956, Clonal growth of mammalian cells in vitro: Growth characteristics of colonies from single HeLa cells with and without a “feeder” layer, J. Exp. Med. 103: 653–666.PubMedCrossRefGoogle Scholar
  51. Renwick, J. H., 1971, The mapping of human chromosomes, Annu. Rev. Genet. 5: 81–120.PubMedCrossRefGoogle Scholar
  52. Ringertz, N. R., and Savage, R. E., 1976, Cell Hybrids, Academic Press, New York, 366 pp.Google Scholar
  53. Ruddle, F. H., 1972, Linkage analysis using somatic cell hybrids, in: Advances in Human Genetics, Vol. 3 ( H. Harris and K. Hirschhorn, eds.), pp. 173–235, Plenum Press, New York.Google Scholar
  54. Ruddle, F. H., and McBride, O. W., 1977, New approaches to cell genetics: Cotransfer of linked genetic markers by chromosome mediated gene transfer, in: The Molecular Biology of the Mammalian Genetics Apparatus( P. Tso, ed.), pp. 163–169, Elsevier/North-Holland, Amsterdam.Google Scholar
  55. Sell, E. K., and Krooth, R. S., 1973, Tabulation of somatic cell hybrids formed between lines of cultured cells, J. Cell Physiol. 80: 453–462.CrossRefGoogle Scholar
  56. Shay, J. W., 1982, Techniques in Somatic Cell Genetics, Plenum Press, New York.Google Scholar
  57. Shows, T. B., 1972, Genetics of human-mouse somatic cell hybrids: Linkage of human genes for lactate dehydrogenase-A and esterase-A4, Proc. Natl. Acad. Sci. U.S.A. 69: 348–352.PubMedCrossRefGoogle Scholar
  58. Shows, T. B., 1977, Genetic and structural dissection of human enzymes and enzyme defects using somatic cell hybrids, in: Isozymes: Current Topics in Biological and Medical Research, Vol. 2 ( M. C. Rattazzi, J. G. Scandalios, and G. S. Whitt, eds.), pp. 107–158, Alan R. Liss, New York.Google Scholar
  59. Shows, T. B., 1978, Mapping the human genome and metabolic diseases, in: Birth Defects( J. W. Littlefield and J. DeGrouchy, eds.), pp. 66–84, Excerpta Medica, Amsterdam.Google Scholar
  60. Shows, T. B., 1979, The X chromosome gene map, in: Genetic Mechanisms of Sexual Development( H. L. Vallet and I. H. Porter, eds.), pp. 253–269, Academic Press, New York.Google Scholar
  61. Shows, T. B., 1983a, Human genome organization of enzyme loci and metabolic diseases, in: Isozymes: Current Topics in Biological and Medical Research, Vol. 10 ( M. C. Rattazzi, J. G. Scandalios, and G. S. Whitt, eds.), pp. 323–339, Alan R. Liss, New York.Google Scholar
  62. Shows, T. B., 1983b, The human molecular map of cloned genes and DNA polymorphisms, Banbury Rep. 14: 347–356 (Cold Spring Harbor Laboratory publication).Google Scholar
  63. Shows, T. B., and McAlpine, P. J., 1982, The 1981 catalogue of assigned human genetic markers and report of the nomenclature committee, Cytogenet. Cell Genet. 8: 667–675.Google Scholar
  64. Shows, T. B., and Sakaguchi, A. Y., 1980, Gene transfer and gene mapping in mammalian cells in culture, In Vitro 16: 55–76.PubMedCrossRefGoogle Scholar
  65. Shows, T. B., Alper, C. A., Bootsma, D., Dorf, M., Douglas, T., Huisman, T., Kit, S., Klinger, H. P., Kozak, C., Lalley, P. A., Lindsley, D., McAlpine, P. J., McDougall, J. K., Meera Khan, P., Meisler, M., Morton, N. E., Opitz, J. M., Partridge, C. W., Payne, R., Roderick, T. H., Rubinstein, P., Ruddle, F. H., Shaw, M., Spranger, J. W., and Weiss, K., 1979, International System for Human Gene Nomenclature (1979), Cytogenet. Cell Genet. 25: 96–116.PubMedCrossRefGoogle Scholar
  66. Shows, T. B., Sakaguchi, A. Y., and Naylor, S. L., 1982, Mapping the human genome, cloned genes, DNA polymorphisms, and inherited disease, in: Advances in Human Genetics, Vol. 12 ( H. Harris and K. Hirschhorn, eds.), pp. 341–452, Plenum Press, New York.CrossRefGoogle Scholar
  67. Shows, T. B., Naylor, S. L., Sakaguchi, A. Y., Zabel, B. U., and Tricoli, J. V., 1983a, Chromosome mapping of cloned genes and DNA polymorphisms to study human disease, Banbury Rep. 14: 347–356.Google Scholar
  68. Shows, T. B., Zabel, B. U., and Tricoli, J. V., 1983b, High resolution chromosome mapping of cloned genes and DNA polymorphisms, in: Recombinant DNA and Medical Genetics (A. Messer and I. Porter, eds.), pp. 79–99, Academic Press, New York.Google Scholar
  69. Shows, T. B., McAlpine, P. J., and Miller, R. L., 1984, The 1983 catalogue of mapped human genetic markers and report of the nomenclature committee, Cytogenet. Cell Genet. 37: 340–393.PubMedCrossRefGoogle Scholar
  70. Smith, M., and Spence, M. A., 1985, Report of the committee on the genetic constitution of chromosomes 7, 8 and 9, Cytogenet. Cell Genet. 40: 156–178.PubMedCrossRefGoogle Scholar
  71. Tippett, P., and Kaplan, J.-C., 1985, Report of the committee on the genetic constitution of chromosomes 20, 21 and 22, Cytogenet. Cell Genet. 40: 268–295.PubMedCrossRefGoogle Scholar
  72. Tricoli, J. V., Rall, L. B., Scott, J., Bell, G. I., and Shows, T. B., 1984, Localization of insulinlike growth factor genes to human chromosomes 11 and 12, Nature (London) 310: 784–786.CrossRefGoogle Scholar
  73. Weiss, M. C., and Green, H., 1967, Human-mouse hybrid cell lines containing partial complements of human chromosomes and functioning human genes, Proc. Natl. Acad. Sci. U.S.A. 58: 1104–1111.PubMedCrossRefGoogle Scholar
  74. Wigler, M., Pellicer, A., Silverstein, S., Axel, R., Urlaub, G., and Chasin, L., 1979, DNA-mediated transfer of the adenine phosphoribosyltransferase locus into mammalian cells, Proc. Natl. Acad. Sci. U.S.A. 76: 1373–1376.PubMedCrossRefGoogle Scholar
  75. Willard, H. F., Skolnick, M. H., Pearson, P. L., and Mandel, J.-L., 1985, Report of the committee on human gene mapping by recombinant DNA techniques, Cytogenet. Cell Genet. 40: 360–489.PubMedCrossRefGoogle Scholar
  76. Willecke, K., Lange, R., Kruger, A., and Reber, T., 1976, Cotransfer of two linked human genes into cultured mouse cells, Proc. Natl. Acad. Sci. U.S.A. 73: 1274–1278.PubMedCrossRefGoogle Scholar
  77. Wollman, E. L., Jacob, F., and Hayes, H., 1956, Conjugation and genetic recombination in Escherichia coliK-12, Cold Spring Harbor Symp. Quant. Biol. 21: 141–162.PubMedCrossRefGoogle Scholar
  78. Wullems, G. J., van der Horst, J., and Bootsma, D., 1977, Transfer of the human gene coding for thymidine kinase and galactokinase to Chinese hamster cells and human-Chinese hamster cell hybrids, Somat. Cell Genet. 3: 281–293.PubMedCrossRefGoogle Scholar
  79. Zabel, B. U., Naylor, S. L., Sakaguchi, A. Y., Bell, G. I., and Shows, T. B., 1983, High-resolution chromosomal localization of human genes for amylase, proopiomelanocortin, somatostatin, and a DNA fragment (D3S1)by in situhybridization, Proc. Natl. Acad. Sci. U.S.A. 80: 6932–6936.PubMedCrossRefGoogle Scholar
  80. Zabel, B. U., Kronenberg, H. M., Bell, G. I., and Shows, T. B., 1985, Chromosome mapping of genes on the short arm of human chromosome 11: Parathyroid hormone gene is at 11p15 together with the genes for insulin, c-Harvey-ras 1, and 0-hemoglobin, Cytogenet. Cell Genet. 11: 505–509.Google Scholar
  81. Zinder, N. D., and Lederberg, J., 1952, Genetic exchange in Salmonella, J. Bacteriol. 64: 679–699.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Thomas B. Shows
    • 1
  1. 1.Department of Human Genetics, Roswell Park Memorial InstituteNew York State Department of HealthBuffaloUSA

Personalised recommendations